por Douglas16 » Qua Abr 03, 2013 15:52

quando a é maior que zero e menor que b.
Minha resolução:
Usando

, tenho que:

![=\lim_{x\rightarrow0} {\left[{\left(\frac{a}{b} \right)}^{x}+1 \right]}^{\frac{1}{x}} \cdot {\left({b}^{x} \right)}^{\frac{1}{x}}=b =\lim_{x\rightarrow0} {\left[{\left(\frac{a}{b} \right)}^{x}+1 \right]}^{\frac{1}{x}} \cdot {\left({b}^{x} \right)}^{\frac{1}{x}}=b](/latexrender/pictures/f20c7a25c952d4b2b3ab12f3ed2a3cc0.png)
Visto que por mim se usar:

o valor limite é indefinido.
Correto ou errado?
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qua Abr 03, 2013 19:36
eu acho que seu pesamento esta correto
como a<b
então

então quando x tende para o infinito

tende para zero
portanto
![\left[\left(\frac{a}{b}\right)^x+1\right]^{\frac{1}{x}} \left[\left(\frac{a}{b}\right)^x+1\right]^{\frac{1}{x}}](/latexrender/pictures/a9217fcaeaf488e8d9b62ad5d4af1adb.png)
tente para 1
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Deixar comentários sobre erros e/ou acertos
por Douglas16 » Qua Abr 03, 2013 15:19
- 2 Respostas
- 1940 Exibições
- Última mensagem por Douglas16

Qui Abr 04, 2013 02:11
Cálculo: Limites, Derivadas e Integrais
-
- Deixar comentários sobre erros e/ou acertos (2)
por Douglas16 » Qua Abr 03, 2013 15:34
- 1 Respostas
- 1879 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 19:18
Cálculo: Limites, Derivadas e Integrais
-
- Deixar comentários sobre erros e/ou acertos (4)
por Douglas16 » Qua Abr 03, 2013 15:56
- 1 Respostas
- 1677 Exibições
- Última mensagem por e8group

Sáb Abr 06, 2013 18:31
Cálculo: Limites, Derivadas e Integrais
-
- Noções básicas sobre erros aritmética
por bebelo32 » Sex Abr 13, 2018 02:25
- 0 Respostas
- 6518 Exibições
- Última mensagem por bebelo32

Sex Abr 13, 2018 02:25
Aritmética
-
- NÚMEROS INTEIROS,erros para menos
por Valmel » Qui Out 24, 2013 15:04
- 0 Respostas
- 976 Exibições
- Última mensagem por Valmel

Qui Out 24, 2013 15:04
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.