por Douglas16 » Qua Abr 03, 2013 15:52

quando a é maior que zero e menor que b.
Minha resolução:
Usando

, tenho que:

![=\lim_{x\rightarrow0} {\left[{\left(\frac{a}{b} \right)}^{x}+1 \right]}^{\frac{1}{x}} \cdot {\left({b}^{x} \right)}^{\frac{1}{x}}=b =\lim_{x\rightarrow0} {\left[{\left(\frac{a}{b} \right)}^{x}+1 \right]}^{\frac{1}{x}} \cdot {\left({b}^{x} \right)}^{\frac{1}{x}}=b](/latexrender/pictures/f20c7a25c952d4b2b3ab12f3ed2a3cc0.png)
Visto que por mim se usar:

o valor limite é indefinido.
Correto ou errado?
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por young_jedi » Qua Abr 03, 2013 19:36
eu acho que seu pesamento esta correto
como a<b
então

então quando x tende para o infinito

tende para zero
portanto
![\left[\left(\frac{a}{b}\right)^x+1\right]^{\frac{1}{x}} \left[\left(\frac{a}{b}\right)^x+1\right]^{\frac{1}{x}}](/latexrender/pictures/a9217fcaeaf488e8d9b62ad5d4af1adb.png)
tente para 1
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Deixar comentários sobre erros e/ou acertos
por Douglas16 » Qua Abr 03, 2013 15:19
- 2 Respostas
- 2063 Exibições
- Última mensagem por Douglas16

Qui Abr 04, 2013 02:11
Cálculo: Limites, Derivadas e Integrais
-
- Deixar comentários sobre erros e/ou acertos (2)
por Douglas16 » Qua Abr 03, 2013 15:34
- 1 Respostas
- 1982 Exibições
- Última mensagem por young_jedi

Qua Abr 03, 2013 19:18
Cálculo: Limites, Derivadas e Integrais
-
- Deixar comentários sobre erros e/ou acertos (4)
por Douglas16 » Qua Abr 03, 2013 15:56
- 1 Respostas
- 1781 Exibições
- Última mensagem por e8group

Sáb Abr 06, 2013 18:31
Cálculo: Limites, Derivadas e Integrais
-
- Noções básicas sobre erros aritmética
por bebelo32 » Sex Abr 13, 2018 02:25
- 0 Respostas
- 6606 Exibições
- Última mensagem por bebelo32

Sex Abr 13, 2018 02:25
Aritmética
-
- NÚMEROS INTEIROS,erros para menos
por Valmel » Qui Out 24, 2013 15:04
- 0 Respostas
- 1043 Exibições
- Última mensagem por Valmel

Qui Out 24, 2013 15:04
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.