• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Deixar comentários sobre erros e/ou acertos (3)

Deixar comentários sobre erros e/ou acertos (3)

Mensagempor Douglas16 » Qua Abr 03, 2013 15:52

\lim_{x\rightarrow\propto} {\left({a}^{x} + {b}^{x}\right)}^{\frac{1}{x}} quando a é maior que zero e menor que b.

Minha resolução:

Usando {\left(\frac{a}{b} \right)}^{x}\rightarrow0, tenho que:

\lim_{x\rightarrow\propto} {\left({a}^{x} + {b}^{x}\right)}^{\frac{1}{x}}=\lim_{x\rightarrow0} {\left[{\left(\frac{a}{b} \right)}^{x}+1 \right]}^{\frac{1}{x}}  \cdot {\left({b}^{x} \right)}^{\frac{1}{x}}=b

Visto que por mim se usar: {\left(\frac{b}{a} \right)}^{x}\rightarrow\propto o valor limite é indefinido.

Correto ou errado?
Douglas16
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Fev 11, 2013 19:15
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Deixar comentários sobre erros e/ou acertos (3)

Mensagempor young_jedi » Qua Abr 03, 2013 19:36

eu acho que seu pesamento esta correto
como a<b

então \frac{a}{b}<1

então quando x tende para o infinito \left(\frac{a}{b}\right)^x tende para zero

portanto \left[\left(\frac{a}{b}\right)^x+1\right]^{\frac{1}{x}} tente para 1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}