por young_jedi » Dom Jan 13, 2013 21:29
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por menino de ouro » Dom Jan 13, 2013 21:40
mesmo como a resposta deu um numero real negativo eu posso dizer que ela converge ?
como também nao deu como resposta

ou

caso desse uma dessas respostas eu diria que ela diverge , más nao é o caso aqui
-
menino de ouro
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Out 23, 2012 22:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: quimica
- Andamento: cursando
por thejotta » Seg Jan 14, 2013 00:11
A função so seria divergente se o resultado fosse infinito ou não existisse... como deu um numero a função é convergente
-
thejotta
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Seg Out 29, 2012 12:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral Imprópria
por CrazzyVi » Seg Set 27, 2010 17:13
- 5 Respostas
- 7002 Exibições
- Última mensagem por menino de ouro

Qui Jan 24, 2013 13:43
Cálculo: Limites, Derivadas e Integrais
-
- Integral Imprópria
por Man Utd » Sex Ago 09, 2013 16:09
- 0 Respostas
- 1182 Exibições
- Última mensagem por Man Utd

Sex Ago 09, 2013 16:09
Cálculo: Limites, Derivadas e Integrais
-
- Integral impropria
por vanu » Qui Dez 12, 2013 20:05
- 1 Respostas
- 1311 Exibições
- Última mensagem por Man Utd

Sex Dez 13, 2013 11:22
Cálculo: Limites, Derivadas e Integrais
-
- Integral impropria
por isabelrebelo » Qui Abr 23, 2015 17:24
- 0 Respostas
- 1498 Exibições
- Última mensagem por isabelrebelo

Qui Abr 23, 2015 17:24
Cálculo: Limites, Derivadas e Integrais
-
- [Áreas] Integral Imprópria
por klueger » Qua Fev 27, 2013 09:40
- 1 Respostas
- 1764 Exibições
- Última mensagem por young_jedi

Qua Fev 27, 2013 13:55
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.