• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral impropria

Integral impropria

Mensagempor menino de ouro » Dom Jan 13, 2013 17:04

pessoal,como analisar a convergência dessa integral? com um pouca de urgência ,obrigado!

\int_{-\infty}^{0}x.e^-^{x^2}^dx
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral impropria

Mensagempor young_jedi » Dom Jan 13, 2013 21:29

fazendo a integral por substituição

u=x^2

du=2xdx

\int \frac{e^{-u}}{2}du

=-\frac{e^{-u}}{2}

=-\frac{e^{-0}}{2}-\lim_{x\rightarrow-\infty}-\frac{e^{-x^2}}{2}

-\frac{1}{2}-0=-\frac{1}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Integral impropria

Mensagempor menino de ouro » Dom Jan 13, 2013 21:40

mesmo como a resposta deu um numero real negativo eu posso dizer que ela converge ?

como também nao deu como resposta -\infty ou +\infty caso desse uma dessas respostas eu diria que ela diverge , más nao é o caso aqui
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integral impropria

Mensagempor thejotta » Seg Jan 14, 2013 00:11

A função so seria divergente se o resultado fosse infinito ou não existisse... como deu um numero a função é convergente
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}