• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de expoente fracionário negativo.

Derivada de expoente fracionário negativo.

Mensagempor Sobreira » Sex Out 26, 2012 11:25

Olá amigos,
Tenho que derivar esta função f(x)={x}^{\frac{-2}{5}}.
Derivando de forma direta, não encontro problema algum...

f'(x)=\frac{-2}{ 5}* {x}^{\frac{-2}{5}-1}

E resolvendo tudo no final encontro o resultado de:

f'(x)=\frac{-2}{ 5}* {x}^{\frac{-7}{5}}

Agora eu não consigo entender ( e vejo que estou falhando com conceitos de matemática básica) se eu partir para resolver, antes de derivar, "ajeitando" a expressão.
Por exemplo:
f(x)=\frac{1}{{x}^{\frac{2}{5}}}

Gostaria que me descrevessem o desenrolar desta solução até a resposta final, pois tentei vários métodos e não chego ao final.
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado

Re: Derivada de expoente fracionário negativo.

Mensagempor MarceloFantini » Sex Out 26, 2012 11:34

Você tentou aplicar a regra do quociente? Segue que

f'(x) = \frac{x^{\frac{2}{5}} \cdot (1)' - 1 \cdot (x^{\frac{2}{5}})'}{ \left( x^{\frac{2}{5}} \right)^2} = \frac{ - \frac{2}{5} x^{\frac{-3}{5}} }{ x^{\frac{4}{5}} }

= \frac{-2}{5} x^{ \frac{-3}{5} - \frac{4}{5} } = \frac{-2}{5} x^{\frac{-7}{5}},

que era o resultado desejado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada de expoente fracionário negativo.

Mensagempor Sobreira » Sex Out 26, 2012 14:55

Beleza.
Eu estava tentando resolver e acabei ignorando as regras de derivação
Obrigado.
:y:
"The good thing about science is that it's true whether or not you believe in it."
Sobreira
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Sex Out 12, 2012 17:33
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}