Olá, estou em dúvida no desenvolvimento de uma questão, e acho que se encaixa aqui.
A questão é :
(i)Seja K>0. Encontre o mínimo da função f(x,y,z)=x+y+z, onde (x,y,z) pertence à superfície definida por Sk={(x,y,z) pertence R³, xyz=k , x >0 , y>0, z>0}.
(ii) Use o item (i) para mostrar que ? xyz?1/3(x+y+z) , para cada x>0, y>0 e z>0, isto é, a média geométrica é menor ou igual à média aritmética.
Se alguém tiver ideia de possibilidade de construção dessa solução, por favor, escreva.
Tenho a resposta final, mas quero saber desenvolvê-la.
Grato pela ajuda.



em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
o ângulo entre o eixo horizontal e o afixo
. O triângulo é retângulo com catetos
e
, tal que
. Seja
o ângulo complementar. Então
. Como
, o ângulo que o afixo
formará com a horizontal será
, então
. Como módulo é um:
.
.