• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] indeterminação?

[Limites] indeterminação?

Mensagempor rafaelbr91 » Ter Mar 27, 2012 18:48

Lim x^4 . (cos 2/x) quando x->0 é zero. Mas a minha dúvida consiste em: Pelo teorema do confronto eu cheguei a essa resposta, mas eu poderia chegar a mesma resposta apenas substituindo x=0? pq dai daria lim 0^4 . (cos 2/0) que equivale a 0 . infinito = 0 , certo? Obrigado!
rafaelbr91
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mar 27, 2012 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Limites] indeterminação?

Mensagempor MarceloFantini » Ter Mar 27, 2012 19:02

Não é possível "substituir" pois é uma indeterminação, não é verdade que 0 \cdot \infty = 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limites] indeterminação?

Mensagempor rafaelbr91 » Ter Mar 27, 2012 19:07

Muito obrigado! Estou aprendendo a me dar com essas indeterminações nesse início de estudo de cálculo! :lol:
rafaelbr91
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Mar 27, 2012 17:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Limites] indeterminação?

Mensagempor nietzsche » Ter Mar 27, 2012 19:31

Sua argumentação não está de toda errada. A inderminação não está em 0.infinito = 0, mas em cos (infinito) = ?, que não sabemos oq é pois infinito não é número.

Em "x^4 . (cos 2/x) quando x->0 é zero" lembre-se que cos x é uma função limitada tal que -1 <= cos x <= 1. Então se você multiplicar
0 . cos x, isso será igual zero pra qualquer x escolhido.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}