Gostaria de saber onde errei na resolução da integral abaixo:

fazendo por substituição (u=-5s , du=-5ds , ds=-du/5)

fazendo por partes

onde k=s , dk=1
v=e^u , dv=e^u du


grata






dina ribeiro escreveu:Gostaria de saber onde errei na resolução da integral abaixo:
fazendo por substituição (u=-5s , du=-5ds , ds=-du/5)










dina ribeiro escreveu:Mas u=-5s ou u=s ??????
Se fosse igual a s , ficaria assim:
Não entendi!
dina ribeiro escreveu:simmmm, então pq ele disse que tenho que substituir o s por u, se u=-5s????
Se u=-5s, então
Onde está o erro????
para a forma
.
e que portanto a integral tem o formato:


.dina ribeiro escreveu:


Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.