• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor alex_2000 » Sex Fev 17, 2012 12:56

A potencia instantanea recebida por um capacitor é

p(t)=v(t).i(t).......(1)

e i(t)=C.\frac{d(v(t))}{dt}.......(2)

C é uma constante (Capacitância), substituindo (2) em (1)

p(t)=v(t).C\frac{d(v(t))}{dt}.......(3)

e, finalmente,

p(t)=\frac{1}{2}.C.\frac{d{v}^{2}(t)}{dt}.......(4)

Como é o desenvolvimento da passagem de (3) para (4)?

Aguardo retorno. Obrigado.
alex_2000
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 12:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Elétrica
Andamento: formado

Re: Derivada

Mensagempor MarceloFantini » Sex Fev 17, 2012 13:51

Isto não faz sentido. Não é verdade que y \cdot y' = \frac{y''}{2}. É possível mostrar o trecho todo? O enunciado, caso tenha.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada

Mensagempor alex_2000 » Sex Fev 17, 2012 18:01

Isto é uma demonstração da fórmula da potência encontrada no livro Curso de Circuitos Elétricos, 2 ed, v.1, 2002, Edgard Blucher, p.12.
Não encontrei nada parecido em outras literaturas, por isso a minha dúvida.
alex_2000
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 12:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Elétrica
Andamento: formado

Re: Derivada

Mensagempor LuizAquino » Sex Fev 17, 2012 19:00

alex_2000 escreveu:p(t)=v(t).C\frac{d(v(t))}{dt}.......(3)

e, finalmente,

p(t)=\frac{1}{2}.C.\frac{d{v}^{2}(t)}{dt}.......(4)

Como é o desenvolvimento da passagem de (3) para (4)?


Note que:

\frac{1}{2}C\frac{d\, v^2(t)}{dt} = \frac{1}{2}C\frac{d\, v(t)v(t)}{dt}

= \frac{1}{2}C\left(\frac{d\, v(t)}{dt}v(t) + v(t)\frac{d\, v(t)}{dt}\right)

= \frac{1}{2}C\left(2v(t)\frac{d\, v(t)}{dt}\right)

= Cv(t)\frac{d\, v(t)}{dt}\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada

Mensagempor alex_2000 » Sáb Fev 18, 2012 17:50

Qual foi o teorema matemático que você usou da passagem de 2 para 3?
Obrigado.
alex_2000
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 12:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Elétrica
Andamento: formado

Re: Derivada

Mensagempor LuizAquino » Sáb Fev 18, 2012 17:58

alex_2000 escreveu:Qual foi o teorema matemático que você usou da passagem de 2 para 3?


Eu presumo que você esteja se referindo da passagem de \frac{1}{2}C\frac{d\, v(t)v(t)}{dt} para \frac{1}{2}C\left(\frac{d\, v(t)}{dt}v(t) + v(t)\frac{d\, v(t)}{dt}\right) .

Note que eu apenas utilizei a regra do produto para as derivadas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59