• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor alex_2000 » Sex Fev 17, 2012 12:56

A potencia instantanea recebida por um capacitor é

p(t)=v(t).i(t).......(1)

e i(t)=C.\frac{d(v(t))}{dt}.......(2)

C é uma constante (Capacitância), substituindo (2) em (1)

p(t)=v(t).C\frac{d(v(t))}{dt}.......(3)

e, finalmente,

p(t)=\frac{1}{2}.C.\frac{d{v}^{2}(t)}{dt}.......(4)

Como é o desenvolvimento da passagem de (3) para (4)?

Aguardo retorno. Obrigado.
alex_2000
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 12:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Elétrica
Andamento: formado

Re: Derivada

Mensagempor MarceloFantini » Sex Fev 17, 2012 13:51

Isto não faz sentido. Não é verdade que y \cdot y' = \frac{y''}{2}. É possível mostrar o trecho todo? O enunciado, caso tenha.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada

Mensagempor alex_2000 » Sex Fev 17, 2012 18:01

Isto é uma demonstração da fórmula da potência encontrada no livro Curso de Circuitos Elétricos, 2 ed, v.1, 2002, Edgard Blucher, p.12.
Não encontrei nada parecido em outras literaturas, por isso a minha dúvida.
alex_2000
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 12:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Elétrica
Andamento: formado

Re: Derivada

Mensagempor LuizAquino » Sex Fev 17, 2012 19:00

alex_2000 escreveu:p(t)=v(t).C\frac{d(v(t))}{dt}.......(3)

e, finalmente,

p(t)=\frac{1}{2}.C.\frac{d{v}^{2}(t)}{dt}.......(4)

Como é o desenvolvimento da passagem de (3) para (4)?


Note que:

\frac{1}{2}C\frac{d\, v^2(t)}{dt} = \frac{1}{2}C\frac{d\, v(t)v(t)}{dt}

= \frac{1}{2}C\left(\frac{d\, v(t)}{dt}v(t) + v(t)\frac{d\, v(t)}{dt}\right)

= \frac{1}{2}C\left(2v(t)\frac{d\, v(t)}{dt}\right)

= Cv(t)\frac{d\, v(t)}{dt}\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada

Mensagempor alex_2000 » Sáb Fev 18, 2012 17:50

Qual foi o teorema matemático que você usou da passagem de 2 para 3?
Obrigado.
alex_2000
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 17, 2012 12:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Elétrica
Andamento: formado

Re: Derivada

Mensagempor LuizAquino » Sáb Fev 18, 2012 17:58

alex_2000 escreveu:Qual foi o teorema matemático que você usou da passagem de 2 para 3?


Eu presumo que você esteja se referindo da passagem de \frac{1}{2}C\frac{d\, v(t)v(t)}{dt} para \frac{1}{2}C\left(\frac{d\, v(t)}{dt}v(t) + v(t)\frac{d\, v(t)}{dt}\right) .

Note que eu apenas utilizei a regra do produto para as derivadas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?