• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Limites em R2

[Limites] Limites em R2

Mensagempor NF17 » Qua Dez 28, 2011 16:27

Olá, vai ser o meu primeiro tópico neste fórum.

Tenho andado a estudar e surgiu esta dúvida. Como não estava a encontrar solução satisfatória em lado nenhum para o meu problema, pensei que vocês me pudessem ajudar.

O enunciado é o seguinte:

Mostrar, a partir da definição, que

\lim_{(x,y)\rightarrow(0,0)} (x^2+y^2) sin\left(\frac{1}{\sqrt[]{x^2+y^2}}\right) = 0


A minha resolução começou por ser esta, no entanto estou bloqueado a meio do processo e não sei como passar daí.

\forall\:\delta>0\:\exists\varepsilon>0:0<\left|\right|(x,y)\:-\:(0,0)\left| \right|<\varepsilon\Rightarrow\left|(x^2+y^2)sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right)\right|<\delta

\forall\:\delta>0\:\exists\varepsilon>0:0<\sqrt[]{x^2+y^2}<\varepsilon\Rightarrow\left|(x^2+y^2)sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right)\right|<\delta

Aqui fiquei bloqueado porque não sei como resolver tendo um seno na função.

\left|(x^2+y^2)sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right) \right|=(x^2+y^2)\left|sin\left(\frac{1}{\sqrt[]{x^2+y^2}} \right) \right|
NF17
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 28, 2011 15:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Limites] Limites em R2

Mensagempor Renato_RJ » Qua Dez 28, 2011 23:52

Boa noite !!

Repare que a função seno é uma função limitada (tudo bem que o argumento tenderá ao infinito quando o par x,y tender a zero, mas mesmo assim, a imagem da função é limitada no intervalo [-1,1] ) enquanto que a função x^2+y^2 tende a zero no limite, logo a função total vai tender a zero quando o par x,y tender a zero...

Acho que é isso..

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: [Limites] Limites em R2

Mensagempor fraol » Qui Dez 29, 2011 21:14

Olá NF17 e Renato_RJ,

Aqui vai um esboço de uma prova formal.

Provar o limite dado é afirmar que: Dado \epsilon > 0, existe \delta > 0 tal que se \left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| < \epsilon então || (x,y) || < \delta.

Sabemos que || (x,y) || = \sqrt(x^2+y^2). Então vamos lá:

Seja \epsilon > 0; tomemos \delta = {-------} ( a preencher).

\left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right|

= \left| \left( x^2 + y^2 \right) \right| \left| sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right|

Como 0 <= \left| sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| <= 1, então devemos ter

= \left| \left( x^2 + y^2 \right) \right| < \epsilon \iff \left( \sqrt(x^2 + y^2 \right) < \sqrt(\epsilon).

Assim podemos preencher a lacuna acima com \delta = \sqrt(\epsilon) e concluímos que:

Seja \epsilon > 0; tomemos \delta = \sqrt(\epsilon) então

\left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| < \epsilon sempre que 0 < || (x,y) || = \sqrt(x^2+y^2) < \delta ou seja:

lim_{(x,y)->(0,0)} \left| \left( x^2 + y^2 \right) sen{\left( \frac{1}{\sqrt(x^2 + y^2)} \right)}  \right| = 0 .

E então o que vocês acham? Críticas, sugestões ...

Abç,
Francisco.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [Limites] Limites em R2

Mensagempor Renato_RJ » Qui Dez 29, 2011 22:53

Gostei, me parece correto... Eu parti logo para o Teorema do Confronto, acho mais tranquilo de fazer esse tipo de exercício...

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D