• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo 1: Grafico

Calculo 1: Grafico

Mensagempor Piva » Qua Jun 29, 2011 19:13

Boa tarde,
Estou com dificuldades para terminar duas questões envolvendo o numéro e. Eu sempre me embolo com ele. Se possivel, gostaria de uma indicação de algum material que me ajude a esclarecer o seu comportamento dentro de questões como as que colocarei abaixo.

1º) considere a função f(x)=e^x/x²-1. Calcule, dominio, intersecoes com os eixos, assintotas verticais e horizontais, pontos criticos e desenhe o grafico.
vou colocar como eu fiz, por favor, me corrijam!
Dominio: xER |x diferente de 1 e -1.
Intersecoes:
y=0 - e^x/x²1=0 - e^x=0 - ln0 n existe, n tem intersecao com eixo x.
x=0 - y=e^0/0²-1=-1 - intersecao em y em -1.

assintotas verticais:
lim e^x/x²-1=+infinito
x tendendo a +1 pela direita

lim f(x)=-infinito
x tendendo a +1 pela esquerda

limf(x)=-infinito
x tendendo a -1 pela direita

limf(x)=+infinito
x tendendo a -1 pela esquerda.

horizontais:
lim e^x/x²-1= lim e^x/x² / lim1 - lim1/x² = +infinito
x tendendo a +infinito

limf(x) = -infinito
x tendendo a -infinito
NÃO POSSUI ASSINTOTAS HORIZONTAIS.

Pontos criticos:
y'=(x²-1)e^x - e^x(2x) / (x²-1)² = e^x(x²-2x-1) / (x²-1)²
y'=0
Pontos criticos: 1+raizde2 e 1-raizde2

monto o grafico mais fica esquisito... n me convenço. Podem me dizer oq esta errado?

A segunda questão é f(x)=e^(1 / x²-1) e ele pede tudo aquilo.
os meus numeros deram, intersecao em y em 1/e sem intersecao em x.
sem assintotas verticais, e horizontais em 0.
Não possui pontos criticos, e o grafico se assemelha ao da e^x porem com a intersecao em 1/e. ta certo isso?

obrigado pela ajuda!
Piva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Jun 29, 2011 18:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}