• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Sáb Mai 28, 2011 10:26

Pode-se afirmar que todas as vezes que existir limites laterais diferentes o limite não existe?
Ou seja, sempre que for uma função descontínua não terá limites (no caso somente os limites laterais diferentes).

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Sáb Mai 28, 2011 19:38

Por definição, dizemos que \lim_{x\to c} f(x) existe e é igual a L se, e somente se, \lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x) = L .

Não confundir o fato de uma função ser descontínua em um ponto com o fato de existir ou não limite naquele ponto.

Por exemplo, a função f(x) = \frac{x^2- 1}{x - 1} é descontínua no ponto x = 1, porém \lim_{x\to 1}f(x) existe e é igual a 2.

Já a função f(x)=\begin{cases}x - 1;\textrm{ se }x \leq 1 \\ x + 1;\textrm{ se }x > 1 \end{cases} também é descontínua no ponto x = 1 e temos que \lim_{x\to 1}f(x) não existe.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Dom Mai 29, 2011 01:42

Valeu pela ajuda Luiz.

No ultimo exemplo, consegui notar a descontinuidade. Porém não consegui notar que o limite não existe, quando x tende a 1. Não seria 0 a resposta para o limite?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Dom Mai 29, 2011 09:52

Qual é o valor de \lim_{x\to 1^-} f(x) ?

E de \lim_{x\to 1^+} f(x) ?

Os valores desses limites laterais são iguais?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Dom Mai 29, 2011 20:41

LuizAquino escreveu:Qual é o valor de \lim_{x\to 1^-} f(x) ?

E de \lim_{x\to 1^+} f(x) ?

Os valores desses limites laterais são iguais?


No segundo exemplo como ja tinha dito, a descontinuidade foi entendida.

Onde: f(x)=\begin{cases}x - 1;\textrm{ se }x \leq 1 \\ x + 1;\textrm{ se }x > 1 \end{cases}

Portanto: \lim_{x\rightarrow1^-}x-1\Rightarrow1-1 = 0

e \lim_{x\rightarrow1^+}x+1\Rightarrow1+1 = 2

Concluindo que os limites laterais são distintos, comprovando a descontinuidade!

Gostaria de saber porque não existe o limite?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Dom Mai 29, 2011 21:09

Claudin escreveu:Gostaria de saber porque não existe o limite?

Leia com atenção a definição dada acima.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Dom Mai 29, 2011 21:11

Li novamente, e acabei de entender Luiz

muito obrigado

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: