• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor AlbertoAM » Sex Abr 15, 2011 23:28

Olá, estou com dificuldade nesse exercício, onde ele pede para derivar e simplificar:

f(x)=\frac{3}{5}x\sqrt[3]{x^2}+\frac{3}{2}x\sqrt[3]{x}+x

R.:f'(x)=(\sqrt[3]{x}+1)^2

Então, nesse exercício teríamos que primeiro utilizar a álgebra das derivadas e depois usar a "tabela de derivadas".Eu pensei em separar assim:
f'(x)=x'\:(\frac{3}{5}\sqrt[3]{{x}^{2}})'+x'(\frac{3}{2}\sqrt[3]{x})+x'

Só que se eu fizesse isso eu poderia fazer isso também:
f'(x)=\frac{3}{5}'\:(x\sqrt[3]{{x}^{2}})'...

Ai a derivada daria zero.Então deve estar errada a minha idéia.Eu teria que usar que tipo de técnica para derivar essa função?
Outras dúvida, eu queria saber se para derivar uma função usando a definição, tanto faz eu usar esse limite f'(x)=\lim_{h\rightarrow0}\frac{f(x+h)-f(x)}{h} ou esse f'(x)=\lim_{x\rightarrow x0}\frac{f(x)-f(x0)}{x-x0}, ou seja, eles são equivalentes, vão dar a mesma derivada?

Sem querer abusar, poderia verificar se eu resolvi corretamente esse exercício, onde ele pede para derivar e simplificar:
http://img13.imageshack.us/i/derivada.png/

Muito obrigado.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Derivadas

Mensagempor MarceloFantini » Sáb Abr 16, 2011 01:24

Vamos reescrever as potências de x:

x \sqrt[3]{x^2} = x \cdot x^{\frac{2}{3}} = x^{\frac{5}{3}}

x\sqrt[3]{x} = x \cdot x^{\frac{1}{3}} = x^{\frac{4}{3}}

Logo a função fica:

f(x) = \frac{3}{5} x^{\frac{5}{3}} + \frac{3}{2} x^{\frac{4}{3}} + x

Derivando:

f'(x) = \frac{5}{3} \cdot \frac{3}{5} x^{\frac{2}{3}} + \frac{4}{3} \cdot \frac{3}{2} x^{\frac{1}{3}} + 1

\therefore f'(x) = x^{\frac{2}{3}} + 2 x^{\frac{1}{3}} + 1 = (x^{\frac{1}{3}} + 1)^2 = (\sqrt[3]{x} +1)^2
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivadas

Mensagempor AlbertoAM » Sáb Abr 16, 2011 01:36

Muito Obrigado pela ajuda.
AlbertoAM
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qui Nov 11, 2010 15:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}