por Higor » Seg Fev 21, 2011 15:52
Boa Tarde Pessoal.
Estou fazendo um exercicio, mas esta dando um valor nao muito convencional, vamos la
talvez vcs possam me ajudar:
EXERCICIO:
![\frac{dy}{dt} = \frac{t.e^t}{y.\sqrt[]{1+y^2}} \frac{dy}{dt} = \frac{t.e^t}{y.\sqrt[]{1+y^2}}](/latexrender/pictures/5f847e3936c3f481fac649db4683baaf.png)
Começei da seguinte forma:

y
![\sqrt[]{1+y^2} dy = [tex]\int_{}^{} \sqrt[]{1+y^2} dy = [tex]\int_{}^{}](/latexrender/pictures/dae387b81034da8e0bbcc43c20986d9d.png)
t.e^t dt
na parte t.e^t dt
resolvi por partes
u= t dv= e^t
du = 1 v= e^t
u.v -

v. du
=

=

y
![\sqrt[]{1+y^2} dy = t. e^t - e^t \sqrt[]{1+y^2} dy = t. e^t - e^t](/latexrender/pictures/3b4ada5480c46a22ffa4be9fb54535db.png)
bom, agora a primeira parte

y
![\sqrt[]{1+y^2} dy \sqrt[]{1+y^2} dy](/latexrender/pictures/2f494de82d546a2b6a6e981315792068.png)
u=1+y^2
du= 2y dy
du/2= y dy
assim :
![\frac{1}{2} \int_{}^{}\sqrt[]{u} du \frac{1}{2} \int_{}^{}\sqrt[]{u} du](/latexrender/pictures/3f1a6bc8c1e101b62123d6f16d50a43d.png)
subistitui
raiz de u por u^1/2
e integrei


voltando o valor de u


ai chego até esse ponto:

nao sei se esta certo, por favor me ajudem ai.
-
Higor
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Fev 20, 2011 17:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Marcampucio » Seg Fev 21, 2011 16:48
Está tudo certo, sim.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Higor » Seg Fev 21, 2011 17:04
Mas, ainda nao chegou ao fim ?? tem mais alguma coisa não tem ???
-
Higor
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Fev 20, 2011 17:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Outra - fração
por cidaiesbik » Qui Mai 21, 2009 10:35
- 3 Respostas
- 3430 Exibições
- Última mensagem por cidaiesbik

Seg Mai 25, 2009 10:17
Desafios Enviados
-
- Outra Dúvida
por rodsales » Sáb Jun 06, 2009 21:41
- 1 Respostas
- 1420 Exibições
- Última mensagem por Marcampucio

Sáb Jun 06, 2009 22:38
Trigonometria
-
- Outra dúvida
por rodsales » Qui Jun 18, 2009 22:12
- 1 Respostas
- 1368 Exibições
- Última mensagem por Marcampucio

Sex Jun 19, 2009 00:48
Trigonometria
-
- Outra dúvida.
por rodsales » Seg Out 12, 2009 09:56
- 1 Respostas
- 1428 Exibições
- Última mensagem por Marcampucio

Seg Out 12, 2009 11:59
Trigonometria
-
- Outra questão
por GABRIELA » Ter Out 20, 2009 16:37
- 1 Respostas
- 1383 Exibições
- Última mensagem por carlos r m oliveira

Qua Out 21, 2009 08:48
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.