• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais

Integrais

Mensagempor thiagoilh » Seg Jan 24, 2011 15:38

Estou com duvida na resolução de integrais por partes, para esse exemplo:
\int_{}^{}xsen(5x).dx

resolvendo só consigo chegar até : \int_{}^{}xsen(5x).dx = -xcos(5x) + sen(5x) + C

porém o resultado dessa integral é : \int_{}^{}xsen(5x).dx = \frac{-xcos5x}{5} + \frac{1}{25}sen5x + C

Por favor quem poder me ajudar!!! Como chega nessas frações??? fico grato!!!!

É URGENTE!!
thiagoilh
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jan 24, 2011 15:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Integrais

Mensagempor helenasilva » Seg Jan 24, 2011 18:47

ola e a minha 1ª vez neste forúm e confesso que tou a gostar imenso..
é o seguinte tenho algumas dúvidas quanto a alguns exercicios que ja os tentei resolver..
h(x)=(x^2-1)/(x^2-9) determina:
seja g(x)=2x+1 determina h e o g(x);
e determina os valores de x para os quais h(x)?0;
no exercico anterior comecei por determinar os zeros mas ainda não sei se é assim que se faz agradecia resposta rapida pois é mesmo urgente.
helenasilva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 24, 2011 17:57
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Integrais

Mensagempor helenasilva » Seg Jan 24, 2011 18:58

Outra questão é a seguinte:
O que se prentende num exercicio que pede para caracterizar as funções??
aparece : Considera as funções reais de variável f(x)=x^2-1 e g(x)=1/x caracteriza as funções:
a) f+g
b) f x g
c) f/g
Não entendo que se pretende com caracteriza as funções!! Na 1ª chegei ate (f+g)= (x^3-x+1)/x agora não sei como caracterizar las podem me ajudar?? URGENTEMENTE..
helenasilva
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 24, 2011 17:57
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Integrais

Mensagempor MarceloFantini » Seg Jan 24, 2011 22:08

Helena, ficamos felizes em saber que você gosta do fórum, mas por favor siga as regras: crie um novo tópico para cada uma das suas dúvidas. Você não respondeu a dúvida do Thiago e ainda por cima colocou outras duas não relacionadas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D