por dagoth » Qui Dez 16, 2010 21:34
Boa noite. Estou fritando o cerebro pra fazer esses 2 exercicios, mas nao esta saindo de maneira nenhuma.
Se alguma alma caridosa puder me ajudar, eu agredeceria MUITO..
Obrigado.
1: Determine uma função

tal que para todo


e
2:
Calcule

onde

No segundo caso, há uma sugestão para se derivar por partes.[/tex]
-
dagoth
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qui Dez 16, 2010 21:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Ciência da Computação
- Andamento: cursando
por Neperiano » Seg Dez 20, 2010 22:27
Ola
Teve um outro topico parecido que eu resolvi esta questão entretanto um outro usuario comentou que era necessário especificar qual a função, este caso se enquadra neste tipo, entretanto mesmo se esta função vou resolver de outra forma, mas devo alertar que pode estar errado.
Vou mostrar a 1
Repare que t é como se fosse x, e o p como se fosse f, então x f(x), tomando f(x) como u, voce tem x como du, resultando em u, então a integral só ficaria u, a integral disto é (u^2)/2, agora deve se trocar o u que ficaria {[t(p)]^2/2}, substitua pelos limites de integração.
Na 2 é mais simples
Primeiro calcule a integral de F(x) e depois aplique ela na outra.
Quanto a primeira integral primeiro passe o t para baixo para ele ficar positivo e depois use partes, se precisa de ajuda pode pedir, mas é tranquilo.
Ficou um pouco confuso, se precisar de ajuda peça
Como disse não sei se esta correto mas acredito que sim
Espero ter ajudado
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda para resolver equação para calcular velocidade média
por marcorrer » Sex Fev 24, 2012 13:10
- 0 Respostas
- 3585 Exibições
- Última mensagem por marcorrer

Sex Fev 24, 2012 13:10
Sistemas de Equações
-
- [Integrais] Regra da cadeia para antidiferenciação
por MrJuniorFerr » Sáb Out 27, 2012 20:02
- 6 Respostas
- 4570 Exibições
- Última mensagem por MrJuniorFerr

Dom Out 28, 2012 01:25
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Quebrando cabeça para resolver uma integral
por MrJuniorFerr » Dom Dez 16, 2012 16:20
- 3 Respostas
- 2312 Exibições
- Última mensagem por young_jedi

Dom Dez 16, 2012 18:59
Cálculo: Limites, Derivadas e Integrais
-
- ajuda em integrais
por futuro fisico » Sáb Jun 25, 2011 18:55
- 12 Respostas
- 5036 Exibições
- Última mensagem por futuro fisico

Sáb Jul 02, 2011 17:08
Cálculo: Limites, Derivadas e Integrais
-
- [Integrais] Preciso de ajuda com esse cálculo...
por phvicari » Sáb Set 03, 2011 04:40
- 3 Respostas
- 1758 Exibições
- Última mensagem por LuizAquino

Dom Set 04, 2011 13:30
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.