• Anúncio Global
    Respostas
    Exibições
    Última mensagem

2º TFC para integrais. Ajuda

2º TFC para integrais. Ajuda

Mensagempor dagoth » Qui Dez 16, 2010 21:34

Boa noite. Estou fritando o cerebro pra fazer esses 2 exercicios, mas nao esta saindo de maneira nenhuma.
Se alguma alma caridosa puder me ajudar, eu agredeceria MUITO..
Obrigado.

1: Determine uma função \varphi : \Re -> \Re tal que para todo x

\varphi (x) = 1 + \int_{0}^{x} t \varphi (t) dt.

e

2:

Calcule \int_{0}^{1} F(x) dx onde F(x) = \int_{1}^{x} {e}^{{-t}^{2}} dt

No segundo caso, há uma sugestão para se derivar por partes.[/tex]
dagoth
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Dez 16, 2010 21:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciência da Computação
Andamento: cursando

Re: 2º TFC para integrais. Ajuda

Mensagempor Neperiano » Seg Dez 20, 2010 22:27

Ola

Teve um outro topico parecido que eu resolvi esta questão entretanto um outro usuario comentou que era necessário especificar qual a função, este caso se enquadra neste tipo, entretanto mesmo se esta função vou resolver de outra forma, mas devo alertar que pode estar errado.

Vou mostrar a 1

Repare que t é como se fosse x, e o p como se fosse f, então x f(x), tomando f(x) como u, voce tem x como du, resultando em u, então a integral só ficaria u, a integral disto é (u^2)/2, agora deve se trocar o u que ficaria {[t(p)]^2/2}, substitua pelos limites de integração.

Na 2 é mais simples

Primeiro calcule a integral de F(x) e depois aplique ela na outra.

Quanto a primeira integral primeiro passe o t para baixo para ele ficar positivo e depois use partes, se precisa de ajuda pode pedir, mas é tranquilo.

Ficou um pouco confuso, se precisar de ajuda peça

Como disse não sei se esta correto mas acredito que sim

Espero ter ajudado

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}