• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Tales e Semelhança

Teorema de Tales e Semelhança

Mensagempor Sal » Sáb Mar 10, 2012 11:35

(UFRJ) A,B e D são pontos sobre a reta r e C1 e C2 são pontos não pertencentes a r tais que C1 , C2 e D são colineares. Conforme figura anexo.
Se S1 indica a área a área do triângulo ABC1 e S2 , a área do triângulo ABC2, e sabendo que DC1=7 , C1C2 = 9 e S2 = 4 . Determine S1.


tentei resolver este exercício usando a semelhança dos triângulos, mas não consigo provar que há semelhança entre eles.
Pensei em considerar o angulo B do triângulo C1BC2 como retângulo, também não consigo provar que é um triângulo retângulo . A solução pra S1 eu sei que é 14. Mas não consigo resolvê-lo.
Anexos
figura.jpg
figura.jpg (6.14 KiB) Exibido 3754 vezes
Sal
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 10, 2012 10:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: regular
Andamento: cursando

Re: Teorema de Tales e Semelhança

Mensagempor LuizAquino » Dom Mar 11, 2012 09:48

Sal escreveu:(UFRJ) A,B e D são pontos sobre a reta r e C1 e C2 são pontos não pertencentes a r tais que C1 , C2 e D são colineares. Conforme figura anexo.
Se S1 indica a área a área do triângulo ABC1 e S2 , a área do triângulo ABC2, e sabendo que DC1=7 , C1C2 = 9 e S2 = 4 . Determine S1.

figura.jpg
figura.jpg (6.14 KiB) Exibido 3728 vezes



Sal escreveu:tentei resolver este exercício usando a semelhança dos triângulos, mas não consigo provar que há semelhança entre eles.
Pensei em considerar o angulo B do triângulo C1BC2 como retângulo, também não consigo provar que é um triângulo retângulo . A solução pra S1 eu sei que é 14. Mas não consigo resolvê-lo.


Os triângulos ABC1 e ABC2 não são semelhantes. Além disso, C1BC2 não é um triângulo retângulo.

Para resolver o exercício, considere a figura abaixo.

figura.png
figura.png (7.45 KiB) Exibido 3728 vezes


Note que C2DH2 e C1DH1 são semelhantes (tente justificar o motivo disso).

Como a área de ABC2 é igual a 4, temos que:

\dfrac{\overline{AB}\;\overline{C_2H_2}}{2} = 4

\overline{C_2H_2} = \dfrac{8}{\overline{AB}}

Agora, use a semelhança entre C2DH2 e C1DH1 para determinar \overline{C_1H_1} . Esse segmento (assim como aconteceu com \overline{C_2H_2} ) ficará dependente de \overline{AB} .

Por fim, basta calcular a área S1 de ABC1 lembrando que:

S_1 = \dfrac{\overline{AB}\;\overline{C_1H_1}}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Teorema de Tales e Semelhança

Mensagempor Sal » Dom Mar 11, 2012 14:46

Ok, Luiz Aquino

Fiz os cálculos e deu certo.
Muito obrigada.
Sal
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Mar 10, 2012 10:55
Formação Escolar: ENSINO MÉDIO
Área/Curso: regular
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D