por Sal » Sáb Mar 10, 2012 11:35
(UFRJ) A,B e D são pontos sobre a reta r e C1 e C2 são pontos não pertencentes a r tais que C1 , C2 e D são colineares. Conforme figura anexo.
Se S1 indica a área a área do triângulo ABC1 e S2 , a área do triângulo ABC2, e sabendo que DC1=7 , C1C2 = 9 e S2 = 4 . Determine S1.
tentei resolver este exercício usando a semelhança dos triângulos, mas não consigo provar que há semelhança entre eles.
Pensei em considerar o angulo B do triângulo C1BC2 como retângulo, também não consigo provar que é um triângulo retângulo . A solução pra S1 eu sei que é 14. Mas não consigo resolvê-lo.
- Anexos
-

- figura.jpg (6.14 KiB) Exibido 3754 vezes
-
Sal
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Mar 10, 2012 10:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: regular
- Andamento: cursando
por LuizAquino » Dom Mar 11, 2012 09:48
Sal escreveu:(UFRJ) A,B e D são pontos sobre a reta r e C1 e C2 são pontos não pertencentes a r tais que C1 , C2 e D são colineares. Conforme figura anexo.
Se S1 indica a área a área do triângulo ABC1 e S2 , a área do triângulo ABC2, e sabendo que DC1=7 , C1C2 = 9 e S2 = 4 . Determine S1.

- figura.jpg (6.14 KiB) Exibido 3728 vezes
Sal escreveu:tentei resolver este exercício usando a semelhança dos triângulos, mas não consigo provar que há semelhança entre eles.
Pensei em considerar o angulo B do triângulo C1BC2 como retângulo, também não consigo provar que é um triângulo retângulo . A solução pra S1 eu sei que é 14. Mas não consigo resolvê-lo.
Os triângulos ABC1 e ABC2 não são semelhantes. Além disso, C1BC2 não é um triângulo retângulo.
Para resolver o exercício, considere a figura abaixo.

- figura.png (7.45 KiB) Exibido 3728 vezes
Note que C2DH2 e C1DH1 são semelhantes (tente justificar o motivo disso).
Como a área de ABC2 é igual a 4, temos que:


Agora, use a semelhança entre C2DH2 e C1DH1 para determinar

. Esse segmento (assim como aconteceu com

) ficará dependente de

.
Por fim, basta calcular a área S1 de ABC1 lembrando que:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Sal » Dom Mar 11, 2012 14:46
Ok, Luiz Aquino
Fiz os cálculos e deu certo.
Muito obrigada.
-
Sal
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Mar 10, 2012 10:55
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: regular
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- teorema de Tales e semelhança de triângulos
por Sal » Sáb Mar 17, 2012 16:33
- 2 Respostas
- 4285 Exibições
- Última mensagem por Sal

Sáb Mar 24, 2012 19:43
Geometria Plana
-
- Teorema de Tales
por LuanRodrigues » Qua Mai 04, 2011 23:42
- 1 Respostas
- 2583 Exibições
- Última mensagem por FilipeCaceres

Qua Mai 04, 2011 23:46
Geometria Plana
-
- Teorema de Tales
por LuanRodrigues » Qui Mai 05, 2011 21:26
- 1 Respostas
- 4963 Exibições
- Última mensagem por Molina

Sex Mai 06, 2011 12:52
Geometria Analítica
-
- teorema de tales
por bmachado » Seg Mar 26, 2012 17:51
- 3 Respostas
- 2508 Exibições
- Última mensagem por ednaldo1982

Sex Mar 30, 2012 01:11
Geometria Plana
-
- Teorema de Tales
por Jhenrique » Seg Nov 12, 2012 04:59
- 0 Respostas
- 1294 Exibições
- Última mensagem por Jhenrique

Seg Nov 12, 2012 04:59
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.