• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Verificando equação de circunferência

Verificando equação de circunferência

Mensagempor Caroline Oliveyra » Dom Jul 10, 2011 13:34

Oi! [eu de novo ;) ]

Tem um exrcício aki numa das minhas listas que pede para eu verificar que as equações dadas são de uma circunferência, achar o centro e o raio.

Eu sei que pra uma eq. representar uma circunferência ele deve se encaixar em três condições: os coeficientes de

x^2 e de y^2 devem existir e devem ser iguais; não pode existir coeficiente para x.y e

r^2 deve ser maior que 0. Na equação x^2 + y^2 -4x + 10y +13 = 0 eu achei o

centro (coeficiente de x = -2a = -4 e coeficiente de y = -2b = 10) mas não sei como achar o raio.

Eu tenho que passar essa equação para a forma reduzida? Eu não lebro se aprendi a fazer isso no ensino médio. Como posso demonstrar que essa eq. representa uma circunferência?

Na eq. 3x^2 + 3y^2 +6x -y = 0 não tem nem termo independente, como se acha o raio disso?


MUITO obrigada desde já a quem puder me ajudar!!!

Grande beijo! :-D
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Verificando equação de circunferência

Mensagempor Caroline Oliveyra » Dom Jul 10, 2011 15:45

Nuss, que confusão que eu fiz aqui... nem eu to entendendo mais o que eu postei... o.O'

Bom, eu já entendi o exercício em que eu estva em dúvida.
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando

Re: Verificando equação de circunferência

Mensagempor giulioaltoe » Dom Jul 10, 2011 21:21

caroline, acho que fica mais facil se voce tental analisar achando as possiveis multiplicaçoes da qual sairam os termos, se voce analisar primeiramente o termo elevado ao quadrado e os termos que apresentam x e fazer um produto notavel dele o termo que sobrar, ou seja oque voce nao analisou vai ser um numero solto, entao apos voce analisar o X e o Y, voce compensa a equação! ex:
x²-4x+y²+10y, sem prestar atenção no 13 uma possivel multiplicação seria (x-2)² = x²-4x+4 e (y+5)²= y²+10y+25, mas como a funcao inicial o termo C é 13 subeentende-se que o R=16 pois x²-4x+y²+10y+29=16 e quando se subtrai 16 dos dois lado para igualar a equação a 0 ela volta a equação inicial ;)
na outra questao tem que fazer a mesma coisa.... analisar e depois ver quanto falta para zerar a função que vai ser o provavel R
ainda na lista 4?
giulioaltoe
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qui Jun 23, 2011 21:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia metalurgica e mat - UENF
Andamento: cursando

Re: Verificando equação de circunferência

Mensagempor Caroline Oliveyra » Ter Jul 12, 2011 14:25

Ah, eu consegui fazer depois... kkkkkkkkkkkkkkkkkkkkkk Eu tava histérica quando postei!

Brigada assim mesmo XD

Bjo!
"... então não importa se você é antílope ou leão; amanheceu, comece a correr."
Caroline Oliveyra
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Jun 19, 2011 13:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e de Materiais
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)