• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Espacial

Geometria Espacial

Mensagempor Rosana Vieira » Qui Fev 16, 2012 22:56

Olá será que alguém pode me ajudar a resolver este exercício, pois não conseguir colar a figura.
1)O uso de malhas quadriculadas contribui sobremaneira para a investigação de áreas de figuras, inclusive as mais complexas.
a) Com auxílio de malhas quadriculadas encontre uma aproximação razoável para a área de um círculo de raio igual a 6 cm. Determine qual foi a aproximação (%) obtida.
b) Faça o mesmo para encontrar uma aproximação para a área da região plana limitada pela elipse da figura abaixo, cuja equação reduzida é: , x e y reais, e .
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Geometria Espacial

Mensagempor fraol » Qui Fev 16, 2012 23:22

Se entendi, está se querendo usar malha quadriculada para aproximação de áreas como instrumentação do ensino. Adicionei uma figura no final desta mensagem.

a) Com auxílio de malhas quadriculadas encontre uma aproximação razoável para a área de um círculo de raio igual a 6 cm. Determine qual foi a aproximação (%) obtida.

Na figura usei quadradinhos de lado valendo 0.5 um (unidade de medida), logo cada quadradinho tem área igual a (0.5)^2 (um)^2. Assim para aproximar a área do círculo de raio = 6 um, basta contar a quantidade de quadradinhos que compõe o círculo. Quanto menor o lado de cada quadradinho, maior o número de quadradinhos na malha e por conseguinte melhor é a aproximação da área ( haja paciência para contar os tais quadradinhos! ).
Para calcular o % de aproximação você pode dividir a área "contada" em quadradinhos pela área do círculo ( \pi 6^2 um^2 e multiplicar por 100.

b) Faça o mesmo para encontrar uma aproximação para a área da região plana limitada pela elipse da figura abaixo, cuja equação reduzida é: , x e y reais, e .

Usar um mecanismo análogo.

malha.png
malha
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Geometria Espacial

Mensagempor Rosana Vieira » Sex Fev 17, 2012 00:41

[quote="Rosana Vieira"]Olá será que alguém pode me ajudar a resolver este exercício, pois não conseguir colar a figura.
1)O uso de malhas quadriculadas contribui sobremaneira para a investigação de áreas de figuras, inclusive as mais complexas.
a) Com auxílio de malhas quadriculadas encontre uma aproximação razoável para a área de um círculo de raio igual a 6 cm. Determine qual foi a aproximação (%) obtida.
b) Faça o mesmo para encontrar uma aproximação para a área da região plana limitada pela elipse da figura abaixo, cuja equação reduzida é: , x e y reais, é x2/36 + y2/16 = 1, x e y reais, -6menor igual x menor igual 6 e - 4menor igual y menor igual 4.
(Lembramos que a área da região plana limitada por uma elipse com semi-eixos a e b é obtida pelo produto . Veja que, neste caso, a = 6 e b = 4).
Rosana Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 74
Registrado em: Qui Nov 17, 2011 00:11
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.