por Danilo » Seg Out 22, 2012 00:20
Encontre a equação de um plano que passa pelo ponto P = (2,1,0) e é perpendicular aos planos x+2y-3z+2 = 0 e 2x-y+4z=0.r
Então... o problema é que eu não consigo visualizar planos perpendiculares! Com reta tudo bem... mas com planos não. Sei da equação do plano, sei do vetor a..''normal'' ao plano... sei que a interseçao deles é uma reta... mas não consigo encaixar tudo isso para resolvero exercício. Grato a quem puder ajudar !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MrJuniorFerr » Seg Out 22, 2012 00:59
Para visualizar melhor planos perpendiculares, sugiro que tente analisar com 2/3 folhas de sulfite ou analise pelo livro: Geometria Analítica - Alfredo Steinbruch.
Para encontrar a equação do plano

, que no qual já foi dado um ponto pertencente a ele, você precisa achar o vetor normal a ele. Sabendo que há 2 planos perpendiculares a ele, n1(vetor normal ao plano1) e n2(vetor normal ao plano2), conclui-se que n1 e n2 são paralelos ao plano

, ou seja, fazendo n1 X n2 (produto vetorial), você descobre um vetor perpendicular a n1 e n2 e normal ao plano

, ou seja, você encontrou o vetor n do plano

, agora é só substituir em

, achar o valor de d e você encontrou a equação geral do plano.
-

MrJuniorFerr
- Colaborador Voluntário

-
- Mensagens: 119
- Registrado em: Qui Set 20, 2012 16:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Alimentos
- Andamento: cursando
por Danilo » Qua Out 24, 2012 20:26
Bom, eu entendi que para encontrar a equação de um plano basta um ponto e a normal deste plano. Sei que a interseção entre dois planos é uma reta. Eu não entendi por que a normal dos planos são paralelos ao plano que queremos encontrar. E também não entendi por que o produto vetorial das outras normais será a normal do plano que queremos encontrar... Grato!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Qui Out 25, 2012 01:35
Você precisa encontrar um vetor que seja normal ao vetor normal de cada um dos planos.
Uma boa forma de fazer isso é calcular o produto vetorial entre os vetores normais, pois ele garante que o vetor encontrado será ortogonal aos vetores dados.
Em símbolos, se

, então

e

. Em termos de produto interno, que é a caracterização usual, temos

.
Encontrado este vetor, você já tem os valores

da equação geral do plano

. Basta substituir o ponto dado e você encontrará

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Danilo » Qui Out 25, 2012 22:32
Obrigado!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Danilo » Qui Out 25, 2012 22:33
Obrigado!!!!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Danilo » Seg Out 29, 2012 16:05
Estou confuso com uma coisa: O que quer dizer quando um vetor é paralelo ao plano? Quer dizer que ele está ''dentro'' do plano? Eu estou com uma dificuldade imensa para desenhar/visualizar isso. Eu entendi os cálculos. Mas não vejo por que o cada normal é paralela a pi. Grato!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Seg Out 29, 2012 18:03
Se for paralelo ao plano pode estar dentro do plano, mas fora também. Pode ser uma reta ortogonal à normal do plano mas que não esteja contida no plano, isto é, não satisfaz a equação dada. De qualquer forma, em nenhum momento foi dito que algum vetor era paralelo a um plano.
Uma forma de visualizar isto é pegar uma caneta e colocar em cima de uma mesa. Agora suba a caneta mantendo a direção original. Você terá um vetor paralelo a um plano sem estar contido nele.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PLANOS - PARALELISMO ENTRE PLANOS
por ubelima » Ter Jun 19, 2012 19:22
- 2 Respostas
- 5704 Exibições
- Última mensagem por ubelima

Qua Jun 20, 2012 01:01
Geometria Analítica
-
- [Interseção entre planos]
por sulafuly » Dom Mar 02, 2014 01:14
- 0 Respostas
- 1924 Exibições
- Última mensagem por sulafuly

Dom Mar 02, 2014 01:14
Geometria Analítica
-
- [GA] Ângulos entre planos
por Larissa28 » Dom Abr 05, 2015 10:03
- 3 Respostas
- 1675 Exibições
- Última mensagem por adauto martins

Sex Abr 10, 2015 11:29
Geometria Analítica
-
- Interseção entre planos
por marinasaboia » Sex Jan 08, 2016 14:44
- 1 Respostas
- 3116 Exibições
- Última mensagem por RuuKaasu

Sex Jan 15, 2016 21:52
Geometria Analítica
-
- medida angular entre planos
por -civil- » Sáb Jun 18, 2011 13:14
- 1 Respostas
- 2213 Exibições
- Última mensagem por LuizAquino

Sáb Jun 18, 2011 22:56
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.