• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Circunferência

Circunferência

Mensagempor Claudin » Sáb Mai 05, 2012 15:11

Determine a equação da circunferencia com centro (1,6) e tangente a reta x-y=1.
Editado pela última vez por Claudin em Sáb Mai 05, 2012 16:18, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor Claudin » Sáb Mai 05, 2012 16:01

Tentei fazer do seguinte modo

tendo a eq da tangente
x-y=1

descobri o ponto na reta tangente sendo
A(1,0)

E fiz a distancia entre 2 pontos

e encontrei a equação como

(x-1)² + (y-6)² = 36

Porém o resultado não é este.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor LuizAquino » Sáb Mai 05, 2012 18:50

Claudin escreveu:Determine a equação da circunferencia com centro (1,6) e tangente a reta x-y=1.


Claudin escreveu:Tentei fazer do seguinte modo

tendo a eq da tangente
x-y=1

descobri o ponto na reta tangente sendo
A(1,0)

E fiz a distancia entre 2 pontos

e encontrei a equação como

(x-1)² + (y-6)² = 36

Porém o resultado não é este.


Não basta descobrir qualquer ponto na reta. Você precisa descobrir o ponto de tangência. Daí sim você poderia calcular a distância entre os pontos e afirmar que ela é o raio.

Seja T o ponto de tangência. Como T pertence a reta, temos que T = (x, x - 1).

Por outro lado, como C = (1, 6) é o centro da circunferência e \vec{d} = (1, 1) é o vetor diretor da reta, temos que:

\overrightarrow{CT} \cdot \vec{d} = 0

Isso porque o raio OT é perpendicular a reta, já que T é ponto de tangência entre a circunferência e a reta.

Sabemos que:

\overrightarrow{CT} = T - C = (x,\, x - 1) - (1,\, 6) = (x - 1,\, x - 7)

Sendo assim, temos que:

(x-1)\cdot 1 + (x-7)\cdot 1 = 0

x = 4

Portanto, temos que T = (4, 3).

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Circunferência

Mensagempor Claudin » Sáb Mai 05, 2012 21:49

Obrigado Luiz Aquino.

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor Claudin » Dom Mai 06, 2012 09:33

Tive uma dúvida, gostaria de saber a técnica que você usa para encontrar vetor diretor d = (1,1), pois eu sempre erro, mudo um sinal que não devia mudar e por ai vai...
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor LuizAquino » Dom Mai 06, 2012 10:29

Claudin escreveu:Tive uma dúvida, gostaria de saber a técnica que você usa para encontrar vetor diretor d = (1,1), pois eu sempre erro, mudo um sinal que não devia mudar e por ai vai...


Você pode escolher dois pontos da reta e determinar o vetor diretor a partir deles.

Por exemplo, na reta x - y = 1, podemos escolher os pontos A=(0, -1) e B=(1, 0). Portanto, um vetor diretor será:

\vec{d} = \overrightarrow{AB} = B - A = (1,\,0) - (0,\,-1) = (1,\, 1)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Circunferência

Mensagempor Claudin » Dom Mai 06, 2012 10:36

No caso você atribuiu valores ne?
Quando x=0 e quando y=0

certo?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Circunferência

Mensagempor LuizAquino » Dom Mai 06, 2012 10:55

Claudin escreveu:No caso você atribuiu valores ne?
Quando x=0 e quando y=0

certo?


Claro.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Circunferência

Mensagempor Claudin » Dom Mai 06, 2012 10:58

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}