• Anúncio Global
    Respostas
    Exibições
    Última mensagem

modulo/ortogonalidade

modulo/ortogonalidade

Mensagempor guigo1302 » Sex Jun 18, 2010 22:28

Boa noite. Tenho o seguinte problema para resolver:

Sejam u=(1,1,-3) e v=(2,1,1) vetores no R³. Verifique se existe um vetor w, de módulo \sqrt{56}, simultaneamente ortogonal aos vetores a=-u+2v-j+k e b=u+v-i. (u,v,w,i,j,k são vetores, mas eu não sei faze a setinha em cima).



eu achei a=(3,0,6) e b=(2,2,-2).
também fiz que |w|=\sqrt{56}=\sqrt{x^2+y^2+z^2}.
x^2+y^2+z^2=56


Também fiz o produto misto axb para achar um vetor ortogonal. Tive como resultado -12i+18j+6z.


Só que agora eu não sei mais o que fazer. Desculpa se eu postei algo errado, é a primeira vez que utilizo o fórum. E obrigado ;D
guigo1302
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jun 18, 2010 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: modulo/ortogonalidade

Mensagempor DanielFerreira » Seg Jun 21, 2010 13:01

Também fiz o produto misto axb para achar um vetor ortogonal. Tive como resultado

achemos o vetor ortogonal através do produto vetorial.
a = - u + 2v - j + k
a = - (1, 1, - 3) + 2(2, 1, 1) - j + k
a = - i - j + 3k + 4i + 2j + 2k - j + k
a = 3i  + 6k
a = (3, 0, 6)


b = u + v - i
b = (1, 1, - 3) + (2, 1, 1) - i
b = i + j - 3k + 2i + j + k - i
b = 2i  + 2j - 2k
b = (2, 2, - 2)

|i j k| i j|
|3 0 6| 3 0|
|2 2 -2| 2 2| =
12j + 6k - 12i + 6j =
- 12i + 18j + 6k =
(- 12, 18, 6)

a resposta é não!!!

o módulo é \sqrt{504}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59