• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício

Exercício

Mensagempor Fer » Ter Nov 25, 2014 00:00

Oi gente. Sou nova no fórum e estou com uma dúvida, alguém pode me ajudar?

"Obtenha a equação do eixo radical das circunferências de centros C1(2,-3) e C2=(-3,-5) e raios R1=4 e R2=5"

Não sei o que é eixo radical e não consigo resolver o exercício.
Obrigada.
Fer
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 24, 2014 23:48
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercício

Mensagempor adauto martins » Ter Nov 25, 2014 14:28

eixo radical e o lugar geometrico dos pontos q. sao equipotentes(de mesma potencia)em relaçao a circunferencias nao concentricas...
vamos tomar um ponto P(x,y) do plano q. contem as circunferencias...entao:
PA.PB=PC.PD(potencia de ponto em relaçao as circunferencias),onde A,B sao pontos da circunferencia {C}_{1}tal q. a reta q. contem PA,PB passam pelo cenro da circunferencia {C}_{1}...racionio analogo se faz em relaçao a circunferencia {C}_{2},e os pontos C,D...
PA.PB=PC.PD\Rightarrow (P{O}_{1}-4).(P{O}_{2}+4)=(P{0}_{2}-5).(P{O}_{2}+5),onde {O}_{1}=(2,3)centro de {C}_{1} e raio=4...{O}_{2}=(-3,-5) centro de {C}_{2} e raio =5...entao:
multiplicando e rearanjandos termos,chegaremos em...I{P{O}_{1}}^{2}-{P{0}_{2}}^
{2}I=I{4}^{2}-{5}^{2}I...ondeI(...)I,modulos...calculando e rearranjando os termos chegaremos na equaçao de uma reta(ax+by+c)eq.do eixo radical, q. e perpendicular ao eixo q. uni as duas circunferencias...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}