• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Vetorial

Produto Vetorial

Mensagempor ARCS » Sex Mai 20, 2011 08:59

Estou com dificuldades neste caso. Já fiz diversos exercícios parecidos com este, mas este envolve somas vetoriais. Grato pela ajuda!

Sabendo que |{u}^{\rightarrow}|=6, |{v}^{\rightarrow}|=4 e 30º o ângulo formado entre u e v.

Calcular a área do paralelogramo determinado por u+v e u-v.
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Produto Vetorial

Mensagempor LuizAquino » Sex Mai 20, 2011 10:25

Dicas

Dados dois vetores \vec{a} e \vec{b}, temos que são válidas as afirmações abaixo.

(i) A área A do paralelogramo determinado por esses vetores, sendo \theta o ângulo formado entre eles, é dada por A = ||\vec{a}||\,||\vec{b}||\,\textrm{sen}\,\theta .

(ii) ||\vec{a} \pm {b}||^2 = ||\vec{a}||^2 \pm 2\left(\vec{a}\cdot\vec{b}\right) + ||\vec{b}||^2

(iii) \cos \theta = \frac{\vec{a}\cdot\vec{b}}{||\vec{a}||||\vec{b}||}, sendo \theta o ângulo formado por esses vetores (não nulos).

(iv) \left(\vec{a} + \vec{b}\right)\cdot \left(\vec{a} - \vec{b}\right) = ||\vec{a}||^2 - ||\vec{b}||^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.