• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação da reta-suporte

Equação da reta-suporte

Mensagempor Alvadorn » Dom Mar 06, 2011 13:20

Eu estou com dificuldade na resolução de duas questões e gostaria de ajuda.
1ª questão
Determine a equação da reta que passa pelo ponto P e é paralela à reta da equação dada: P(2, -5) e x = 2

A solução que eu imaginei, eu não tenho certeza se o racicionio está certo.
solução imaginada escreveu:Sendo x=2, e as retas paralelas a equação também sera x=2.


2ª questão
Imagem

Eu pensei em fazer algo como:
\begin{vmatrix}
   x & y & 1  \\ 
   8 & 2 & 1   \\ 
   1 & 2 & 1 
\end{vmatrix}
=
0 \rightarrow  2x + y + 16 - 8y - 2x - 2 = 0

-7y + 14=0
y = 2


Porém a resposta correta da equação da reta-suporte é y = 5, não tenho ideia de como chegar nesse resultado.
Alvadorn
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Fev 20, 2010 12:47
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação da reta-suporte

Mensagempor Renato_RJ » Dom Mar 06, 2011 14:11

Boa tarde campeão...

Vamos as definições, se uma reta é paralela a x=2 esta reta pode ser x=3, x =4, etc.. Mas não pode ser x=2, pois seriam a mesma reta !!!

No segundo problema, ele pede a reta da base menor, você descobriu a equação da reta da BASE MAIOR, a base menor é o segmento DC, refaça as contas.... Só uma coisa, eu não entendi o porque da matriz e a coordenada z ter valor igual a 1 (a não ser que você esteja usando um plano paralelo a xy com altura z=1), pois pelo que me consta, um trapézio tem pelo menos dois lados paralelos, logo AB é paralelo a DC, se C tem coordenada (6,5) D terá (x,5) então sua reta seria y = 5...

Abraços e boa sorte nas contas...

Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Equação da reta-suporte

Mensagempor Alvadorn » Dom Mar 06, 2011 14:31

Renato_RJ escreveu:Boa tarde campeão...

Vamos as definições, se uma reta é paralela a x=2 esta reta pode ser x=3, x =4, etc.. Mas não pode ser x=2, pois seriam a mesma reta !!!

No segundo problema, ele pede a reta da base menor, você descobriu a equação da reta da BASE MAIOR, a base menor é o segmento DC, refaça as contas.... Só uma coisa, eu não entendi o porque da matriz e a coordenada z ter valor igual a 1 (a não ser que você esteja usando um plano paralelo a xy com altura z=1), pois pelo que me consta, um trapézio tem pelo menos dois lados paralelos, logo AB é paralelo a DC, se C tem coordenada (6,5) D terá (x,5) então sua reta seria y = 5...

Abraços e boa sorte nas contas...

Renato.

1ª questão
Na verdade a reta pode ser x =2, até por o enunciado diz isso, e a resposta oferecida pelo autor do livro também da x = 2 como resposta, eu apenas queria entender porque.

2ª questão
O valor de z sendo igual a 1 se deve a forma segmentaria da equação da reta \frac{x}{a} + \frac{x}{b} = 1, considerando um ponto generico P(x,y), e fazendo:
\begin{vmatrix}
   x & y & 1  \\ 
   a & 0 & 1 \\
   0 & b & 1
\end{vmatrix}
=
0

Eu analisei novamente o desenho do gráfico e conclui, sendo D (x,5) como dito por você, e as retas paralelas da base maior com a base menor {m}_{1} = {m}_{2}, ou seja, por y - {y}_{0} = m(x - {x}_{0}) \rightarrow y - 5 = \frac{8-1}{2-2} (x - {x}_{0})\rightarrow y = 5


A 2ª questão eu compreendi, mas a 1ª ainda não.
Alvadorn
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Fev 20, 2010 12:47
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação da reta-suporte

Mensagempor Renato_RJ » Dom Mar 06, 2011 14:46

Concorda comigo que se duas retas possuem a mesma equação elas são a mesma reta ?? Teorema da unicidade... Mas se x=2 então a reta é paralela ao eixo Y e com valor constante de x, isto é, qualquer outra reta paralela a ela não poderá assumir o valor de x = 2, então a única reta que poderíamos chamar de paralela a x = 2 e que passe pelos pontos dados, seria ela mesma, o que não faz muito sentido ao menos para mim...

Quanto a matriz, eu nem lembrava da forma segmentária da reta, obrigado por me lembrar dela... Então faz sentido as suas contas, mas você só usou a base errada (acontece, normal)....

[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Equação da reta-suporte

Mensagempor Alvadorn » Dom Mar 06, 2011 15:26

Renato_RJ escreveu:Concorda comigo que se duas retas possuem a mesma equação elas são a mesma reta ?? Teorema da unicidade... Mas se x=2 então a reta é paralela ao eixo Y e com valor constante de x, isto é, qualquer outra reta paralela a ela não poderá assumir o valor de x = 2, então a única reta que poderíamos chamar de paralela a x = 2 e que passe pelos pontos dados, seria ela mesma, o que não faz muito sentido ao menos para mim...

Quanto a matriz, eu nem lembrava da forma segmentária da reta, obrigado por me lembrar dela... Então faz sentido as suas contas, mas você só usou a base errada (acontece, normal)....

[ ]'s
Renato.


Agora interpretei o que você falou, e fez um pouco de sentido a mim. Duas retas que possuem a mesma equação, não tem de ser necessariamente a mesma reta, pois tem as retas paralelas iguais ou coincidentes. (sendo a e b duas retas, a // b, com a\cap b=a ou a=b)
Ou isso não confere?
Editado pela última vez por Alvadorn em Dom Mar 06, 2011 15:50, em um total de 1 vez.
Alvadorn
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sáb Fev 20, 2010 12:47
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação da reta-suporte

Mensagempor Renato_RJ » Dom Mar 06, 2011 15:33

Exatamente, estamos falando a mesma coisa mas em linguagem diferente.... Hehehehehe.... Uma reta passa por exatos dois pontos, se outra reta passa por esses mesmos dois pontos, essas retas são idênticas (a = b)...

[ ]'s
Renato
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}