• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sei não!!!!!

Sei não!!!!!

Mensagempor nayane » Qua Nov 24, 2010 20:48

Uma das raízes do polinômio x³ + 2x² - 7x - 2 é 2. Qual o produto das outras raizes?
Nayane
Avatar do usuário
nayane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sex Set 10, 2010 10:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em ciências biológicas
Andamento: cursando

Re: Sei não!!!!!

Mensagempor Molina » Qua Nov 24, 2010 22:03

Boa noite, Nayane.

Para descobrir as outras raízes você pode fazer a fatorização deste polinômio, reduzindo seu grau. O melhor modo de fazer isso é dividindo este polinômio por x - 2, já que sabemos que 2 é uma das raízes.

Fazendo a divisão de um polinômio de grau 3 por um polinômio de grau 1 você encontrará um polinômio de grau 2. Usando a fórmula de Báskara você encontrar as raízes. Então basta multiplicá-las.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Sei não!!!!!

Mensagempor nayane » Qui Nov 25, 2010 10:08

Molina agradeço a explicação, mas confesso que fiquei com uma duvida, não sabendo se fiz exatamente o que me dissestes.
Eu fiz o seguinte: na divisão do termo x³+2x²-7x-2 por x-2 o resultado foi x² - 7 com resto 12.
Agora estou confusa e não sei o que fazer, vc poderia me ajudar? :$
Diante mão agradeço.
Nayane
Avatar do usuário
nayane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sex Set 10, 2010 10:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em ciências biológicas
Andamento: cursando

Re: Sei não!!!!!

Mensagempor Molina » Qui Nov 25, 2010 16:55

nayane escreveu:Molina agradeço a explicação, mas confesso que fiquei com uma duvida, não sabendo se fiz exatamente o que me dissestes.
Eu fiz o seguinte: na divisão do termo x³+2x²-7x-2 por x-2 o resultado foi x² - 7 com resto 12.
Agora estou confusa e não sei o que fazer, vc poderia me ajudar? :$
Diante mão agradeço.

Boa tarde, Nayane.

Na verdade a divisão de x^3+2x^2-7x-2 por x-2 é x^2 + 4x + 1. Você pode obter este valor através do método das chaves (Euclidiano) ou até mesmo usando o método de Briot Ruffini.

De qualquer forma agora basta encontrar as raízes de x^2 + 4x + 1=0.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Sei não!!!!!

Mensagempor nayane » Qui Nov 25, 2010 21:03

Molina obrigada, realmente não soube resolvi a divisão, obrigada também pelo site foi muito importante
Nayane
Avatar do usuário
nayane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sex Set 10, 2010 10:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em ciências biológicas
Andamento: cursando


Voltar para Polinômios

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D