• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Polinômios] Prova da fuvest 2ª fase

[Polinômios] Prova da fuvest 2ª fase

Mensagempor vlopagliuca » Qua Dez 12, 2012 15:35

Eu procurei por este exercício nos tópicos mas não achei,se for repetido me desculpem.

O polinômio ,o p(x) = x^4+ax³+bx²+cx-8, em que a, b, c são números reais, tem o número complexo 1 + i como raiz, bem como duas raízes simétricas.

a) Determine a, b, c e as raízes de p(x).
b) Subtraia 1 de cada uma das raízes de p(x) e determine todos os polinômios com coeficientes reais, de menor grau, que possuam esses novos valores como raízes.

Eu comecei procurando fazer uma espécie de simplificação da equação em o que deveria ser um sistema,mas no meio do caminho eu travei.
(1+i)^4 +a(1+i)².(1+i)+b(1+i)²+c(1+i)-8=0
(1+i)².(1+i)²+a(1+i)².(1+i)+b(1+i)²+c(1+i)=8
(2i.2i)+a(2i)(1+i)+b(2i)+c+ci=8
-4+a2i+(-2)a+b2i+c+ci=8
2i(a+b)+(-2)a+c+ci=12

Neste momento eu travei,se puderem me ajudar e e dizer onde errei,ou melhor,como devo começar,seria muito útil.Obrigado!
vlopagliuca
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 12, 2012 14:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Polinômios] Prova da fuvest 2ª fase

Mensagempor young_jedi » Qua Dez 12, 2012 21:14

primeiro voce tem que se 1+i é raiz então 1-i tambem é raiz
outra coisa é que possui raizes simetricas ou seja uma raiz n e outra -n

então utilizando as relações de Girard

(1+i)(1-i)(-n).n=-8

-n^2.2=-8

n^2=4

n=2

então as raize simetricas são -2 e 2 e as complexas (1+i) e (1-i) então voce pelas relações de Gerardi pode determinar os demais coeficientes.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.