• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação raiz/polinômio

Relação raiz/polinômio

Mensagempor engel » Sáb Ago 07, 2010 11:31

Olá!

A questão diz: " Se a é uma raiz do polinômio p(x) e b é uma raiz do polinômio q(x), então:

a)p(b)/q(a) =1
b) p(a).q(b) =1
c) p(a)+q(b) =1
d) p(b).q(a) =0
e) p(a)+q(b)=0

Bom, a sendo raiz de p, o polinômio é divisível por a. Da mesma forma b. Então, não seria alternativa B, pois sendo divisível, o produto delas resultaria em 1??? Como desenvolvo uma relação entre as raízes e os polinômios?

Obrigada pela ajuda, Abraços!!!
engel
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Dez 30, 2009 16:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Relação raiz/polinômio

Mensagempor Molina » Sáb Ago 07, 2010 14:16

Boa tarde.

Você pode dar polinômios para p(x) e q(x) para ver qual o resultado que será obtido. Por exemplo, chame p(x)=x+1 e q(x)=x+2. Assim, as raízes serão respectivamente -1 e -2, que farão o papel de a e b. Mas, p(-1)=0 e p(-2)=0. O que você pode concluir com isso?

Isso foi um caso particular, mas podemos generalizar para se a é uma raiz do polinômio p(x) e b é uma raiz do polinômio q(x), então p(a)=0 e q(b)=0

Acredito que poderá assinalar mais de uma alternativa...

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Relação raiz/polinômio

Mensagempor MarceloFantini » Sáb Ago 07, 2010 16:47

Como a é raíz de P(x) e b é raíz de Q(x), então P(a) = 0 e Q(b) = 0. Vamos analisar as alternativas:

a) Não conhecemos P(b) e nem Q(a), logo não podemos afirmar que \frac{P(b)}{Q(a)} = 1.

b) P(a) \cdot Q(b) = 1 é falso, pois ambos são zero.

c) Idem pelo mesmo motivo acima.

d) Falso pelo mesmo motivo do item a.

e) Verdadeiro, pois P(a) + Q(b) = 0 + 0 = 0.

Molina, onde viu que haveria mais de uma alternativa?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Relação raiz/polinômio

Mensagempor Molina » Sáb Ago 07, 2010 16:53

Fala Fantini.

Juro ter lido na alternativa d) p(a).q(b) = 0 ao invés de p(b).q(a) = 0 que é o que consta. Rs.. :lol:


Valeu pelo toque!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59