por JKS » Qui Jun 20, 2013 01:32
Não consigo.. se alguém puder me ajudar ..
Determine dois números complexos z1 e z2 tais que
![\left[z1 \right]=\left|z2 \right|=1 \left[z1 \right]=\left|z2 \right|=1](/latexrender/pictures/fb7549dc4c9f9277e7342078dc7b5f34.png)
e z1+z2=1.
-
JKS
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Ago 01, 2012 13:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por fraol » Dom Jul 21, 2013 22:35
Boa noite,
Vamos considerar os dois números complexos:

e

De
![\left|z_1 \right| = 1 \Rightarrow x_1^2 + y_1^2 = 1 \Leftrightarrow y_1 = \sqrt[2]{1-x_1^2} \left|z_1 \right| = 1 \Rightarrow x_1^2 + y_1^2 = 1 \Leftrightarrow y_1 = \sqrt[2]{1-x_1^2}](/latexrender/pictures/6858e71ba4a5c4b246213f90e1673350.png)
.
De

e
![y_1 + y_2 = 0 \Leftrightarrow y_2 = - y_1 = - \sqrt[2]{1-x_1^2} y_1 + y_2 = 0 \Leftrightarrow y_2 = - y_1 = - \sqrt[2]{1-x_1^2}](/latexrender/pictures/a7bf6e8eb39c096f9bd3359b0d158485.png)
.
De
![\left|z_2 \right| = 1 \Rightarrow x_2^2 + y_2^2 = 1 \Leftrightarrow (1-x_1)^2 + \left(- \sqrt[2]{1-x_1^2} \right)^2 = 1 \left|z_2 \right| = 1 \Rightarrow x_2^2 + y_2^2 = 1 \Leftrightarrow (1-x_1)^2 + \left(- \sqrt[2]{1-x_1^2} \right)^2 = 1](/latexrender/pictures/1801c69aa639ff158640f8d8fc5d378d.png)
então
![x_1 = \frac{1}{2}, y_1 = \sqrt[2]{\frac{3}{4}}, x_2 = \frac{1}{2}, y_1 = - \sqrt[2]{\frac{3}{4}} x_1 = \frac{1}{2}, y_1 = \sqrt[2]{\frac{3}{4}}, x_2 = \frac{1}{2}, y_1 = - \sqrt[2]{\frac{3}{4}}](/latexrender/pictures/0a45325ef9cd1c2ebb42463269876f8c.png)
.
Agora basta substituir esses valores nas expressões de

e

para completar.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Números complexos] Determinar a^b
por belguilhem » Sáb Ago 20, 2011 17:50
- 3 Respostas
- 2226 Exibições
- Última mensagem por belguilhem

Sáb Ago 20, 2011 21:13
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 17117 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- Determinar 5 números de uma PG
por Carolziiinhaaah » Qua Jun 16, 2010 14:11
- 2 Respostas
- 1383 Exibições
- Última mensagem por Carolziiinhaaah

Qua Jun 16, 2010 15:11
Progressões
-
- Determinar os numeros criticos
por Vencill » Qua Dez 03, 2014 17:42
- 3 Respostas
- 1905 Exibições
- Última mensagem por Cleyson007

Qui Dez 04, 2014 08:21
Funções
-
- Numeros complexos!
por Estela » Seg Mar 17, 2008 00:57
- 7 Respostas
- 13355 Exibições
- Última mensagem por andegledson

Seg Nov 02, 2009 21:41
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.