por rassis46 » Qui Abr 15, 2010 20:00
Caros, tenho o seguinte problema de confiabilidade que sei resolver por simulação de Monte-Carlo mas preciso de saber como fazê-lo analiticamente:
Um moínho de martelos para partir pedra possui placas de desgaste que atingem a espessura limite admissível em momentos descritos por uma distribuição de probabilidade Weibull com os parâmetros: Localização = 250 horas; Forma = 4 e Escala = 800 horas. Estas placas também podem partir em momentos descritos por uma distribuição de probabilidade Exponencial negativa com o parâmetro: Média = 1/1.600 falhas/hora.
Pretendo saber qual a frequência média de intervenções de substituição: umas vezes por desgaste, outras vezes por quebra.
Construindo um modelo de simulação de Monte-Carlo, obtemos 0,00138 substituições/hora. Mas como resolver analiticamente? Podem ajudar-me?
Grato,
-
rassis46
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Abr 15, 2010 19:35
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Doutoramento em Engenharia mecânica
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integrais] Exercício - resolução falha
por MrJuniorFerr » Seg Out 29, 2012 00:23
- 5 Respostas
- 2989 Exibições
- Última mensagem por MrJuniorFerr

Seg Out 29, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [número de modos] Heeeelp!!!
por monique barros » Qui Set 05, 2013 11:45
- 0 Respostas
- 834 Exibições
- Última mensagem por monique barros

Qui Set 05, 2013 11:45
Análise Combinatória
-
- [Integral Iterada de Seis Modos Diferentes]
por raimundoocjr » Dom Dez 15, 2013 16:42
- 0 Respostas
- 1009 Exibições
- Última mensagem por raimundoocjr

Dom Dez 15, 2013 16:42
Cálculo: Limites, Derivadas e Integrais
-
- Dois Problemas De P.A
por Guedes » Sex Out 08, 2010 13:44
- 5 Respostas
- 4539 Exibições
- Última mensagem por Augusto Evaristo

Sex Out 15, 2010 23:40
Progressões
-
- Dois Relógios
por gustavowelp » Qua Jun 15, 2011 07:43
- 1 Respostas
- 3625 Exibições
- Última mensagem por FilipeCaceres

Qua Jun 15, 2011 14:49
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.