• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de Matemática

Problema de Matemática

Mensagempor Alyne_vieira » Qui Mai 17, 2012 20:30

Meu professor passou um problema para resolver que ao você montar fica um sistema de 2 equações mas 3 incognitas!!! Tentei fazer Cramer, Escalonamento, O método da comparação, mas, não consegui resolver cheguei até a ficar com uma equação de 2 incognitas!!!
Cheguei a montar o sistema mas não consegui resolver meu sistema ficou assim:
3x+7y+z=42,1
4x+10y+z=47,3
Mas, não consegui resolver!!!
Problema:
Uma loja vende 3 tipos de lampadas (x,y,z. Tamara comprou 3 lampadas tipo x, 7 tipo y, e 1 tipo z, pagando R$42,10. José comprou 4 lampadas tipo x, 10 tipo y e uma tipo z, pagando R$47,30. Nas condições dadas, a compra de 3 lampadas, sendo uma de cada tipo custa:
a) R$ 30,50 b) R$ 31,40 c) R$ 31,70 d) 32,30 e)R$33,20
Alyne_vieira
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mai 17, 2012 20:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema de Matemática

Mensagempor DanielFerreira » Sáb Mai 19, 2012 08:55

Alyne,
seja bem vinda!
Vc montou o sistema corretamente. Agora, vamos isolar Z e ver no que dá.
3x + 7y + z = 42,1 ============================> z = 42,1 - 3x - 7y

4x + 10y + z = 47,3 ===========================> z = 47,3 - 4x - 10y


Podemos igualar certo?

42,1 - 3x - 7y = 47,3 - 4x - 10y

x + 3y = 5,2

x = 5,2 - 3y

Se substituirmos este valor nas equações acima, veremos que aparecerá apenas uma equação. Podendo ter várias soluções.

Alyne,
quando estiver diante de um sistema cujo número de incógnitas é maior que o número de equações saiba que será indeterminado (diversas soluções).

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Problema de Matemática

Mensagempor Alyne_vieira » Dom Mai 20, 2012 14:53

Obrigada, pela ajuda!!!
Alyne_vieira
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mai 17, 2012 20:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema de Matemática

Mensagempor DanielFerreira » Dom Mai 20, 2012 17:21

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}