• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de Matemática

Problema de Matemática

Mensagempor Alyne_vieira » Qui Mai 17, 2012 20:30

Meu professor passou um problema para resolver que ao você montar fica um sistema de 2 equações mas 3 incognitas!!! Tentei fazer Cramer, Escalonamento, O método da comparação, mas, não consegui resolver cheguei até a ficar com uma equação de 2 incognitas!!!
Cheguei a montar o sistema mas não consegui resolver meu sistema ficou assim:
3x+7y+z=42,1
4x+10y+z=47,3
Mas, não consegui resolver!!!
Problema:
Uma loja vende 3 tipos de lampadas (x,y,z. Tamara comprou 3 lampadas tipo x, 7 tipo y, e 1 tipo z, pagando R$42,10. José comprou 4 lampadas tipo x, 10 tipo y e uma tipo z, pagando R$47,30. Nas condições dadas, a compra de 3 lampadas, sendo uma de cada tipo custa:
a) R$ 30,50 b) R$ 31,40 c) R$ 31,70 d) 32,30 e)R$33,20
Alyne_vieira
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mai 17, 2012 20:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema de Matemática

Mensagempor DanielFerreira » Sáb Mai 19, 2012 08:55

Alyne,
seja bem vinda!
Vc montou o sistema corretamente. Agora, vamos isolar Z e ver no que dá.
3x + 7y + z = 42,1 ============================> z = 42,1 - 3x - 7y

4x + 10y + z = 47,3 ===========================> z = 47,3 - 4x - 10y


Podemos igualar certo?

42,1 - 3x - 7y = 47,3 - 4x - 10y

x + 3y = 5,2

x = 5,2 - 3y

Se substituirmos este valor nas equações acima, veremos que aparecerá apenas uma equação. Podendo ter várias soluções.

Alyne,
quando estiver diante de um sistema cujo número de incógnitas é maior que o número de equações saiba que será indeterminado (diversas soluções).

Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Problema de Matemática

Mensagempor Alyne_vieira » Dom Mai 20, 2012 14:53

Obrigada, pela ajuda!!!
Alyne_vieira
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mai 17, 2012 20:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Problema de Matemática

Mensagempor DanielFerreira » Dom Mai 20, 2012 17:21

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59