• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz

Matriz

Mensagempor Claudin » Seg Set 12, 2011 19:57

Então no exercício abaixo, gostaria de saber se meu raciocinio esta coreto.

Não conseguir fazer uma matriz utilizando o latex.
Porem na questao a) obtive como resultado
1 0 0 |-11 -2 -24
0 1 0 |-4 0 -8
0 0 1 |6 1 12
Ou seja obtive que a matriz é invertível, e sua inversa está ao lado da identidade.
Métodos utilizados: Gauss Jordan para achar a matriz escalonada reduzida e logo perceber se é ou não inversível.

Já a letra b), não compreendi este "X" na questão, alguém para ajudar?
Anexos
Matriz.png
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor Molina » Ter Set 13, 2011 01:18

Boa noite, Claudin.

Este X é uma matriz que você quer descobrir. Primeiramente pense na ordem que a matriz X deve ter e posteriormente os elementos desta matriz.

Qualquer dúvida, avise :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz

Mensagempor Claudin » Ter Set 13, 2011 11:21

Valeu Molina, mais tarde eu volto a postar. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor Claudin » Ter Set 13, 2011 11:54

Sendo AX = B

1 0 2 x1 2
2 -1 3 X x2 = -3
4 1 8 x3 1

Sendo assim ficaria:

x1+2x3
2x1-x2+3x3
4x1+x2+8x3
Editado pela última vez por Claudin em Ter Set 13, 2011 12:02, em um total de 1 vez.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor Claudin » Ter Set 13, 2011 12:02

Utilizei Gauss Jordan para resolver o sistema e encontrei
x1= -26
x2=-7
x3=14
correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Matriz

Mensagempor LuizAquino » Ter Set 13, 2011 12:18

Claudin escreveu:Não conseguir fazer uma matriz utilizando o latex.


Para isso, use o comando:

Código: Selecionar todos
[tex]
A =
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
[/tex]


Note que usamos o carácter "&" para separar as colunas e os caracteres "\\" para separar as linhas.

O resultado desse comando é:

A = 
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}

Claudin escreveu:Porem na questao a) obtive como resultado
1 0 0 |-11 -2 -24
0 1 0 |-4 0 -8
0 0 1 |6 1 12
Ou seja obtive que a matriz é invertível, e sua inversa está ao lado da identidade.
Métodos utilizados: Gauss Jordan para achar a matriz escalonada reduzida e logo perceber se é ou não inversível.


Reveja suas contas, pois a inversa de A é:

A^{-1} = 
\begin{bmatrix}
-11 & 2 & 2 \\
-4 & 0 & 1 \\
6 & -1 & -1
\end{bmatrix}

Claudin escreveu:Utilizei Gauss Jordan para resolver o sistema e encontrei
x1= -26
x2=-7
x3=14
correto?


Está correto.

Entretanto vale lembrar que para resolver a equação matricial AX = B não é necessário montar um sistema nesse caso. Já que você conhece a inversa de A, se você multiplicar à esquerda toda a equação pela inversa de A, ficará com:

AX = B \Rightarrow A^{-1}AX = A^{-1}B \Rightarrow IX = A^{-1}B \Rightarrow X = A^{-1}B

No caso, a matriz I que apareceu no desenvolvimento acima é a matriz identidade (de ordem 3 por 3).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz

Mensagempor Claudin » Ter Set 13, 2011 13:39

Corrigi aqui, mas não obtive o mesmo resultado

obtive:

A^{-1}= \begin{bmatrix} 
-1 & -2 & 2 \\
-4 & 0 & 1 \\
6 & 1 & -1
\end{bmatrix}

Não to conseguindo encontrar o erro.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?