por Cleyson007 » Qua Jun 10, 2009 13:51
Olá, boa tarde!
Estou com dúvida na montagem do problema que segue. Penso que o mesmo pode ser resolvido usando o estudo das Progressões. Gostaria de ajuda.
--> Entre cinco pessoas foram repartidas 100 medidas de trigo, de modo que a segunda recebeu a mais do que a primeira o mesmo que a terceira recebeu a mais do que a segunda, que corresponde ao mesmo que a quarta recebeu a mais do que a terceira e também a mesma quantidade que a quinta recebeu a mais do que a quarta. Quanto recebeu cada pessoa?
Agradeço sua ajuda!
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Marcampucio » Qua Jun 10, 2009 14:26
a primeira recebe

a segunda

a terceira

a quarta

a quinta


há múltiplas soluções. Vejamos algumas soluções inteiras que ocorrem para os valores
pares de


A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
-
Marcampucio
- Colaborador Voluntário

-
- Mensagens: 180
- Registrado em: Ter Mar 10, 2009 17:48
- Localização: São Paulo
- Formação Escolar: GRADUAÇÃO
- Área/Curso: geologia
- Andamento: formado
por Cleyson007 » Qua Jun 10, 2009 14:55
Marcampucio escreveu:a primeira recebe

a segunda

a terceira

a quarta

a quinta


há múltiplas soluções. Vejamos algumas soluções inteiras que ocorrem para os valores
pares de


Boa tarde Marcampucio!
Boa explicação
Obrigado pela ajuda.
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quantia Investida
por Cleyson007 » Sex Ago 07, 2009 14:10
- 2 Respostas
- 1984 Exibições
- Última mensagem por Cleyson007

Sex Ago 07, 2009 19:36
Matemática Financeira
-
- Problema quantia do irmão
por junior_gyn » Qua Mai 04, 2011 16:01
- 1 Respostas
- 6646 Exibições
- Última mensagem por Molina

Qua Mai 04, 2011 20:06
Desafios Médios
-
- Pre-Universitario (Trigo...)
por Pre-Universitario » Qui Ago 11, 2011 17:31
- 2 Respostas
- 3530 Exibições
- Última mensagem por Pre-Universitario

Sex Ago 12, 2011 17:22
Trigonometria
-
- Pre-Universitario (Trigo....)
por Pre-Universitario » Sex Ago 12, 2011 18:07
- 2 Respostas
- 1079 Exibições
- Última mensagem por Pre-Universitario

Dom Ago 14, 2011 20:14
Trigonometria
-
- Pre-Universitario Trigo......
por Pre-Universitario » Qua Ago 24, 2011 18:09
- 0 Respostas
- 701 Exibições
- Última mensagem por Pre-Universitario

Qua Ago 24, 2011 18:09
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.