• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão aritmética aindaaa...

Progressão aritmética aindaaa...

Mensagempor Alessandrasouza » Ter Mai 18, 2010 18:59

Oie gente..entaum.. eu to com uma dúvida de novoo...na verdade é outra pro meesmo assuunto.. É um problema de PA q eu resolvi mas acho q tá muito grande a resolução e nem sei se está de fato correto..É assim:

Alexandre comprou um album com espaço para 660 figurinhas. Td dia ele compra 20 pacotinhos, sendo 5 figurinhas em kd uma. No 1º dia ele colocou todas. No 2º dia, vieram algumas repetidas e colocou 95. No 3º 90 e assim por diante. Calcule o tempo necessáriop/ preencher o album...

E eu fiz assim:

Sn = \frac{(a1+an).n}{2}

660= \frac{(100+[a1+(n-1).r}{2}

660= \frac{[100+(100+(n-1)-5)].n}{2}

660= \frac{[100+100-5n+5].n}{2}

660= \frac{[205-5n].n}{2}

2.(660)= 205n-5{n}^{2}

1320= 205n-5{n}^{2}

0=-1320+205n-5{n}^{2} dividi td por -5 p/ simplificar

0=264-41n+1{n}^{2} virou uma equação de 2ºgrau a=1 b=-41 c=264

resolvendo a equação de 2ºgrau têm-se que n1=33 n2=8

Por isso, eu quero saber se naum tem um jeito de fazer que seja menor....
Alessandrasouza
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 14, 2010 15:10
Formação Escolar: EJA
Área/Curso: ensino médio
Andamento: cursando

Re: Progressão aritmética aindaaa...

Mensagempor MarceloFantini » Ter Mai 18, 2010 23:07

O jeito analítico acredito que seja somente esse, mas você pode fazer a soma no braço (não é tão grande).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão aritmética aindaaa...

Mensagempor Cleyson007 » Qua Mai 19, 2010 19:17

Boa noite Alessandra e Fantini!

Também não consegui desenvolver outra forma de resolução (acredito que se houver outra forma, não irá fugir muito de P.A...)

O resultado está correto! é interessante observar que a P.A. é decrescente, portanto, r<0.

Achei interessante que a resolução cai numa equação do 2º grau... portanto, duas raízes reais (valores de n).

Fiquei com uma dúvida: "Como se explica o fato de possuírem dos valores que satisfazem (algebricamente) a condição?"


Acredito que a resposta coerente para esse tipo de exercício seja 8 dias.. quando o Alexandre chegar no 33º dia, as figurinhas já não estariam todas coladas?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Progressão aritmética aindaaa...

Mensagempor MarceloFantini » Qui Mai 20, 2010 02:24

Porque eles satisfazem a equação. Lembre-se que a equação não sabe do problema, nós é que sabemos da situação real representada pela equação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}