• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Progressão Aritmética

Mensagempor Carolziiinhaaah » Seg Jun 14, 2010 18:12

Determine a condição para que as raízes da equação ax^4 + bx^2 + c = 0 formem uma PA. Observação: a equação dada é chamada de biquadrada.
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Elcioschin » Seg Jun 14, 2010 23:11

Raízes da equação em ordem crescente:

- V[- b + V(b² - 4ac)/2a] ; - V[- b - V(b² - 4ac)/2a] , + V[- b - V(b² - 4ac)/2a] , + V[- b + V(b² - 4ac)/2a]

........... a1 ............................. a2 ........................a3 ..............................a4

a1 + a3 = 2*a2 ----> Propriedade de PA

(a1 + a3)² = 4*a2² -----> a1² + a3² + 2*a1*a3 = 4*a2²

[- b - V(b² - 4ac)]/2a + [- b + V(b² - 4ac)]/2a - 2*V[- b + V(b² - 4ac)/2a]*V[- b - V(b² - 4ac)/2a] = 4*[- b - V(b² - 4ac)]/2a

- 2b - 2*V(4ac) = - 4b - 4*V(b² - 4ac) ----> - 2*V(4ac) = - 2b - 4*V(b² - 4ac) ----> Resolvendo chega-se a: 9b² = 100ac

Exemplo ----> x^4 - 10*x² + 9 = 0 ----> Raízes em ordem crescente: - 3 , - 1 , +1 , +3 ----> PA de razão 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Progressão Aritmética

Mensagempor Carolziiinhaaah » Ter Jun 15, 2010 12:24

Muito obrigada, Elcioschin :D
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.