por henrique_mat » Seg Ago 23, 2010 18:57
Ola, sou novo aqui e na profissao de professor.
eis a questao
![tg(5arctg\frac{\sqrt[]{3}}{3}-\frac{1}{4}arcsen\frac{\sqrt[]{3}}{2}) tg(5arctg\frac{\sqrt[]{3}}{3}-\frac{1}{4}arcsen\frac{\sqrt[]{3}}{2})](/latexrender/pictures/0b8089e9f8a70b48af87fd28e0028da8.png)
O problema é que para resolver tive que usar
![tga=\frac{\sqrt[]{3}}{3}\Rightarrow a=\frac{\pi}{6} tga=\frac{\sqrt[]{3}}{3}\Rightarrow a=\frac{\pi}{6}](/latexrender/pictures/891a35c858a89a573a619aabd8463ae8.png)
e analogamente para o arco seno, desta forma obtive tg(5.30 - 60/4) e assim consegui chegar na resposta correta q é
-1.
Porem não consegui resolver da mesma forma que y=cos(arsen(1/3)) onde

e depois pela relação fundametal obtendo o resultado
![y=\frac{2\sqrt[]{2}}{3} y=\frac{2\sqrt[]{2}}{3}](/latexrender/pictures/7f8f2b970ba46579aa392476a200a364.png)
.
Peço que me ajudem a resolver desta segunda maneira pois acabei chegando em tg5x...ai não da né..
desde ja agradeço, abs Henrique
"Ninguém é tão grande que não possa apender..nem tão pequeno que não possa ensinar"
-
henrique_mat
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Ago 23, 2010 18:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic. matematica
- Andamento: formado
por VtinxD » Seg Ago 23, 2010 20:16
Primeiro vamos nomear as coisas:
![\alpha = arctg\frac{\sqrt[2]{3}}{3} \alpha = arctg\frac{\sqrt[2]{3}}{3}](/latexrender/pictures/76fceb8f5724fb3f67a45c3f3975ef48.png)
![\beta = arcsen\frac{\sqrt[2]{3}}{2} \beta = arcsen\frac{\sqrt[2]{3}}{2}](/latexrender/pictures/9aa38933a9c2222b6d4850f1ed213acd.png)
Nós podemos achar o

e o

pela tabela de sen,cos e tg.
Pela tabela:


Agora subistuindo os valores na primeira equação:

-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por henrique_mat » Ter Ago 24, 2010 17:07
Obrigado VtinxD , mas por este caminho eu ja consegui..o problema é resolver pelo mesmo caminho que esta resolvido o cos(arcsen)...abs
-
henrique_mat
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Ago 23, 2010 18:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic. matematica
- Andamento: formado
por MarceloFantini » Ter Ago 24, 2010 20:01
Mas você usou, a diferença é que os arcos eram conhecidos. Veja:

e

. Vamos ver sem os valores de a e b:

Não tem como resolver sem conhecer os valores.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por henrique_mat » Ter Ago 24, 2010 20:59
Obrigado Fantini..acho q oq eu precisava era confirmar que esta questao nao da para ser resolvida sem conhecer os arcos, tenho outros exercicios como esse e agora tenho ctz q sem conhecer os arcos é impossivel...
Gostei do seu curso, adoraria fazer, mas por aqui nao tem..abs
-
henrique_mat
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Ago 23, 2010 18:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic. matematica
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [funções inversas]
por Ana_Rodrigues » Ter Jan 24, 2012 17:46
- 2 Respostas
- 1740 Exibições
- Última mensagem por Ana_Rodrigues

Ter Jan 24, 2012 22:33
Funções
-
- funções inversas
por Edgard Guarido » Sex Mar 07, 2014 18:53
- 2 Respostas
- 2609 Exibições
- Última mensagem por Edgard Guarido

Qui Mar 13, 2014 15:54
Funções
-
- Funções circulares inversas
por Ananda » Qui Mar 20, 2008 20:03
- 2 Respostas
- 4810 Exibições
- Última mensagem por Ananda

Seg Mar 24, 2008 17:13
Trigonometria
-
- funçoes circulares inversas
por Thassya » Sex Mai 29, 2009 11:29
- 3 Respostas
- 2529 Exibições
- Última mensagem por Cleyson007

Sáb Mai 30, 2009 10:18
Trigonometria
-
- Função Circulares inversas 2
por Fernanda90 » Qui Ago 27, 2009 16:52
- 2 Respostas
- 4230 Exibições
- Última mensagem por Fernanda90

Qui Ago 27, 2009 20:25
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.