por raphaelo » Qua Jul 29, 2015 14:53
É a questão 589 do livro de EM do Gelson Iezzi, 10ª edição.
Prove que em todo triângulo ABC vale a igualdade:
a²+b²+c² = 2ab cosC + 2ac cosB + 2bc cosA
Desenvolvi desta maneira até empacar:
a²+(b²+c²-2bc cosA) = 2a (b cosC + c cosB)
2a² = 2a (b cosC + c cosB)
a = b cosC + c cos B (I)
Foi aí que empaquei. Acho que me falta alguma relação fundamental de de cossenos. Forçando a barra, tentei desenvolver desmembrando os cossenos mas caí numa igualdade falsa:
Considerando que: cos C = c/a ; cos B = b/a substituindo em (I) teríamos:
a = bc/a+ cb/a
a²= 2bc -> o que não é necessáriamente verdade!
Gostaria então que me ajudassem no desenvolvimento que eu fiz até onde empaquei e caminhos alternativos para conseguir a tal prova. Gostaria de saber também o motivo de na minha "forçação de barra" eu ter chegado a um absurdo.
Bom estudo a todos!
P.S.: Esta é a minha primeira dúvida que posto neste fórum, se tiver algo que eu tiverem dicas para melhorar a exposição do problema, por favor, não exitem em dizer!
-
raphaelo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jul 29, 2015 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bach em ciências matemáticas e da Terra
- Andamento: cursando
por nakagumahissao » Qui Jul 30, 2015 13:50
Como precisei adicionar uma figura e é difícil colocar neste fórum, deixei resolvido em separado.
Veja a demonstração em:
http://matematicaparatodos.pe.hu/2015/0 ... -cossenos/
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por raphaelo » Qui Jul 30, 2015 15:41
Muito obrigado, nakagumahissao!!!
A solução foi bem simples e clara! Bastou fazer a soma simultânea de cada um dos lados (abc) pela Lei dos cossenos e por algebrismo simples chegou-se a prova! Bem bolado! O caminho que percorri foi embolado!rs
-
raphaelo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jul 29, 2015 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: bach em ciências matemáticas e da Terra
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lei dos Cossenos
por Joseaugusto » Ter Mar 06, 2012 11:43
- 4 Respostas
- 2813 Exibições
- Última mensagem por Joseaugusto

Ter Mar 06, 2012 22:42
Trigonometria
-
- Lei dos cossenos
por kandara » Qua Abr 30, 2014 17:35
- 1 Respostas
- 4469 Exibições
- Última mensagem por Russman

Qua Abr 30, 2014 18:54
Trigonometria
-
- UFSCar - Lei dos cossenos
por brunocav » Seg Mai 30, 2011 18:16
- 2 Respostas
- 10431 Exibições
- Última mensagem por brunocav

Seg Mai 30, 2011 19:23
Trigonometria
-
- LEI DOS SENOS E COSSENOS
por MERLAYNE » Qua Abr 25, 2012 20:36
- 1 Respostas
- 1719 Exibições
- Última mensagem por Russman

Qua Abr 25, 2012 21:26
Trigonometria
-
- Multiplicação de cossenos
por anfran1 » Sex Jun 29, 2012 10:39
- 5 Respostas
- 4962 Exibições
- Última mensagem por Arkanus Darondra

Dom Jul 01, 2012 12:48
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.