• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria - Relações entre razões trigonométricas

Trigonometria - Relações entre razões trigonométricas

Mensagempor METEOS » Seg Set 30, 2013 17:06

Bom dia, caros(as) membros deste fórum.

Como preparação para um teste, há dois exercícios do mesmo género de trigonometria que consistem em relacionar as razões trigonométricas, de forma a provar que um dos membros é igual ao outro.

Enunciado: Sendo x a amplitude de um ângulo agudo, mostra que:

1) sen x + \frac{cos x}{tg x} = \frac{1}{sen x}


2) \frac{cos^2 x}{1-sen x} - 1 = sen x

Gostaria que me indicassem a correcção, e posteriormente, truques para a resolução deste género de exercícios

Agradecido,

Luís Soares (couldzao).
METEOS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 30, 2013 17:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciencias
Andamento: cursando

Re: Trigonometria - Relações entre razões trigonométricas

Mensagempor Russman » Seg Set 30, 2013 17:41

Bata que você reduza os denominadores da expressões.

Na primeira, note que \tan (x) = \frac{\sin (x) }{\cos (x)}. Assim,

\sin(x) + \frac{\cos (x) }{\tan (x)} = \sin(x) + \frac{\cos (x) }{\frac{\sin (x) }{\cos (x)}} =\sin(x) + \frac{\cos^2 (x) }{\sin (x)} =
= \frac{\sin ^2 (x) + \cos ^2 (x)}{\sin (x)}  = \frac{1}{\sin (x)}.

Na segunda,

\frac{\cos^2 (x)}{1- \sin (x)} - 1 = \frac{\cos ^2 (x) - 1 + \sin (x)}{1- \sin (x)} = \frac{-\sin ^2 (x) + \sin (x) }{1 - \sin (x)}=
=\sin (x) .\left ( \frac{- \sin (x) + 1}{1 - \sin (x) } \right ) = \sin (x) (1) =  \sin (x)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.