• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria - Relações entre razões trigonométricas

Trigonometria - Relações entre razões trigonométricas

Mensagempor METEOS » Seg Set 30, 2013 17:06

Bom dia, caros(as) membros deste fórum.

Como preparação para um teste, há dois exercícios do mesmo género de trigonometria que consistem em relacionar as razões trigonométricas, de forma a provar que um dos membros é igual ao outro.

Enunciado: Sendo x a amplitude de um ângulo agudo, mostra que:

1) sen x + \frac{cos x}{tg x} = \frac{1}{sen x}


2) \frac{cos^2 x}{1-sen x} - 1 = sen x

Gostaria que me indicassem a correcção, e posteriormente, truques para a resolução deste género de exercícios

Agradecido,

Luís Soares (couldzao).
METEOS
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Set 30, 2013 17:04
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciencias
Andamento: cursando

Re: Trigonometria - Relações entre razões trigonométricas

Mensagempor Russman » Seg Set 30, 2013 17:41

Bata que você reduza os denominadores da expressões.

Na primeira, note que \tan (x) = \frac{\sin (x) }{\cos (x)}. Assim,

\sin(x) + \frac{\cos (x) }{\tan (x)} = \sin(x) + \frac{\cos (x) }{\frac{\sin (x) }{\cos (x)}} =\sin(x) + \frac{\cos^2 (x) }{\sin (x)} =
= \frac{\sin ^2 (x) + \cos ^2 (x)}{\sin (x)}  = \frac{1}{\sin (x)}.

Na segunda,

\frac{\cos^2 (x)}{1- \sin (x)} - 1 = \frac{\cos ^2 (x) - 1 + \sin (x)}{1- \sin (x)} = \frac{-\sin ^2 (x) + \sin (x) }{1 - \sin (x)}=
=\sin (x) .\left ( \frac{- \sin (x) + 1}{1 - \sin (x) } \right ) = \sin (x) (1) =  \sin (x)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.