• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivar expressão trigonometrica

Derivar expressão trigonometrica

Mensagempor joaofonseca » Qua Nov 30, 2011 22:29

Dada a seguinte expressão:

\frac{1}{x^2}\cdot sin^2(\frac{x}{2})

Encontre a formula da derivada.

Eu fiz assim:

\left (\frac{1}{x^2} \right )' \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left (sin^2 \left (\frac{x}{2}\right)\right)'

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot \left(sin \left(\frac{x}{2}\right)\right)' \right]

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \left(\frac{x}{2}\right)' \right]

\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \frac{2}{4} \right]

Será que está bem?Alguém pode conferir?
Isto de calcular a derivada complica-se quando é preciso misturar a regra do quociente, do produto e da cadeia.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivar expressão trigonometrica

Mensagempor MarceloFantini » Qui Dez 01, 2011 01:45

Está certo, mas simplifique \frac{-2x}{x^4} para \frac{-2}{x^3}, não era necessário colocar \frac{2}{4}, embora não está errado a derivada de \frac{x}{2} é \frac{1}{2}, não havia necessidade de multiplicar numerador e denominador por 2.

Poderia ter notado que \frac{1}{x^2} = x^{-2} e então (x^{-2})' = -2x^{-3} = \frac{-2}{x^{3}}. Uma forma interessante seria notar que \sin^2 \left( \frac{x}{2} \right) = \frac{1 - \cos \left( 2 \cdot \frac{x}{2} \right)}{2}, daí \left( \sin^2 \left( \frac{x}{2} \right) \right)' = \left( \frac{1 - \cos x}{2} \right)' = \frac{ \sin x}{2}.

Note que é consistente, uma vez que 2 \cdot \sin \left( \frac{x}{2} \right) \cdot \cos \left( \frac{x}{2} \right) = \sin \left( 2 \cdot \frac{x}{2} \right) = \sin x.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.