por joaofonseca » Qua Nov 30, 2011 22:29
Dada a seguinte expressão:

Encontre a formula da derivada.
Eu fiz assim:

![\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot \left(sin \left(\frac{x}{2}\right)\right)' \right] \frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot \left(sin \left(\frac{x}{2}\right)\right)' \right]](/latexrender/pictures/b714fc08b15c3e7cabbe23768d6ef967.png)
![\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \left(\frac{x}{2}\right)' \right] \frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \left(\frac{x}{2}\right)' \right]](/latexrender/pictures/7adb9be375fc0eea770dd074e2c18f42.png)
![\frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \frac{2}{4} \right] \frac{-2x}{x^4} \cdot sin^2 \left (\frac{x}{2} \right)+\frac{1}{x^2}\cdot \left [2 \cdot sin \left (\frac{x}{2}\right) \cdot cos\left(\frac{x}{2}\right)\cdot \frac{2}{4} \right]](/latexrender/pictures/137702bffa4660523cc604956e778581.png)
Será que está bem?Alguém pode conferir?
Isto de calcular a derivada complica-se quando é preciso misturar a regra do quociente, do produto e da cadeia.
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Qui Dez 01, 2011 01:45
Está certo, mas simplifique

para

, não era necessário colocar

, embora não está errado a derivada de

é

, não havia necessidade de multiplicar numerador e denominador por 2.
Poderia ter notado que

e então

. Uma forma interessante seria notar que

, daí

.
Note que é consistente, uma vez que

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Expressão Trigonométrica
por Anderson Alves » Dom Mar 04, 2012 22:21
- 2 Respostas
- 1774 Exibições
- Última mensagem por Anderson Alves

Dom Mar 04, 2012 23:27
Trigonometria
-
- Expressão Trigonométrica
por Pri Ferreira » Seg Abr 09, 2012 15:44
- 1 Respostas
- 1249 Exibições
- Última mensagem por LuizAquino

Sex Abr 13, 2012 12:56
Trigonometria
-
- Expressão Trigonométrica
por Man Utd » Sáb Jun 15, 2013 20:45
- 0 Respostas
- 788 Exibições
- Última mensagem por Man Utd

Sáb Jun 15, 2013 20:45
Trigonometria
-
- [Trigonometria] Expressão trigonométrica
por Kleveland Cristian » Seg Abr 30, 2012 12:48
- 3 Respostas
- 4924 Exibições
- Última mensagem por DanielFerreira

Ter Mai 01, 2012 15:02
Trigonometria
-
- Trigonometria: Cálculo da Expressão Trigonométrica
por leotecco » Qui Mai 21, 2015 19:59
- 0 Respostas
- 1715 Exibições
- Última mensagem por leotecco

Qui Mai 21, 2015 19:59
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.