por Renato_RJ » Sex Jan 13, 2012 19:44
Boa noite amigos !!!
Gostaria que alguém me ajudasse com uma função, na verdade não quero a solução do problema, só quero entender como "lidar" com a questão abaixo.
![[\frac{2x^2}{x^2+1}] = x [\frac{2x^2}{x^2+1}] = x](/latexrender/pictures/be586c672c5b5ab35fde1eb5df6f4362.png)
Onde
![[x] [x]](/latexrender/pictures/3e5314e9fd31509fdeb83faa0f729ba2.png)
é o menor inteiro maior ou igual a x.
E aí está a minha dúvida, posso lidar com essa equação como uma equação "normal" ou tem algum detalhe que não sei ??? Mais uma vez muito obrigado, não precisa resolver o problema só quero "o caminho das pedras"...
[ ]'s
Renato.
EDITADO:
Na verdade o nome dessa função é função teto, então a equação seria:

Acho que consigo fazer algum progresso agora..
EDITADO 2:
Esqueçam, já resolvi !!!

Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por ant_dii » Sáb Jan 14, 2012 02:31
Mas agora eu me interessei... kkkkk
Poste, por favor se não for incomodo, o que você fez...
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Renato_RJ » Sáb Jan 14, 2012 12:12
Simplesmente desenhei o gráfico de ambas as funções e vi onde eles se interceptavam, só achei três valores onde elas se interceptam que são 0, 1 e 2...
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por ant_dii » Sáb Jan 14, 2012 15:42
Pesquisei sobre o tema e descobri que pouco se fala sobre esta função...
Mas eu mesmo fiquei com muitas dúvidas, por exemplo, como confirmar que só existe esses três pontos? E se fosse igual à

, qual seria o resultado? Como confirmá-lo? Como fazer isso algebricamente?
Ela é muito interessante...
Fui procurar respostas e percebi que para responder tais questões é preciso estudar o comportamento do gráfico da função teto (o recurso que você utilizou) utilizando máximos e mínimos da função e qual é o comportamento dela no infinito (

) ou quando se aproxima de zero, ou seja, utilizando limite e somente depois fazer a intersecção com a função desejada. Isso porque é difícil saber o comportamento da função que você postou.
De outra forma, mas agora analítica, pode-se fazer o seguinte também.
Considerando que

, teremos

de onde

.
Agora, de

, temos

.
Se

, teremos

.
de

, teremos

.
Se

, então

.
Se

, então

.
assim podemos ver que

Agora é possível fazer a intersecção da função

com a função

.
Que retorna os pontos

,

e

.
Se fosse com a função

, os pontos seriam

,

.
Fiz isso só por curiosidade... Mas obrigadoo
Só os loucos sabem...
-
ant_dii
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qua Jun 29, 2011 19:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: formado
por Renato_RJ » Sáb Jan 14, 2012 18:06
Cara, eu que te agradeço !!!
Agora sei como funciona analiticamente....
Muito grato mesmo...
[ ]'s
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Pequena dúvida
por Fernanda Lauton » Sáb Jul 03, 2010 22:53
- 4 Respostas
- 2332 Exibições
- Última mensagem por Fernanda Lauton

Seg Jul 05, 2010 13:37
Logaritmos
-
- Potência - Pequena dúvida
por CaioCaesar » Seg Abr 16, 2012 07:14
- 1 Respostas
- 1350 Exibições
- Última mensagem por jacobi

Qua Abr 18, 2012 10:43
Álgebra Elementar
-
- sistema de equações do 2º grau pequena dúvida
por TAE » Sex Jun 08, 2012 20:24
- 1 Respostas
- 1952 Exibições
- Última mensagem por Molina

Sáb Jun 09, 2012 14:37
Sistemas de Equações
-
- Tamanho da amostra - população heterogenia e pequena
por Roniberto » Sex Fev 13, 2009 15:41
- 2 Respostas
- 2772 Exibições
- Última mensagem por Roniberto

Ter Fev 17, 2009 09:22
Estatística
-
- Pequena ajuda de "arranque"!
por eicma » Sex Dez 11, 2009 14:29
- 0 Respostas
- 930 Exibições
- Última mensagem por eicma

Sex Dez 11, 2009 14:29
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.