• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular Xv e Yv de uma função

Calcular Xv e Yv de uma função

Mensagempor Marcos Paulo » Dom Nov 07, 2010 12:12

Olá, estou com um problema na segiunte questao.. que estou estudando para uma prova.

# O Lucro de uma empresa é dado em função do Nº de peças produzidas (em milhares) L(x)= -x²+20x-30 , determine:

A) O lucro para se produzir 5 mil peças
b) O Nº de peças para se obter lucro máximo
C) O Lucro máximo

Eu não me recordo muito bem desta matéria, não estou sabendo o que fazer com o 5 mil da questão A e os procedimentos para as outras, que intendi é que como o A esta negativo o vertice da parabola é para baixo.. e o Xv= -b/2a e Yv= -delta/4a ,alguem pode me ajudar? Agradeço desde já, obrigado.

Para a letra B eu fiz Xv=\frac{-b}{2.a} Xv= \frac{-20}{2.(-5)} Xv=2

Para Letra C: Yv= \frac{-( 20² .-4.(-5).(-30)}{2.(4.(-1))} Yv= \frac{1000}{20} Yv= 50

A letra não consegui, se poderem conferir as que eu fiz, ficaria agradecido to desesperado rsrs..
Marcos Paulo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 07, 2010 11:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: Calcular Xv e Yv de uma função

Mensagempor JoaoGabriel » Dom Nov 07, 2010 14:55

a) ele pede o L(5):

5² + 20 . 5 - 30

L(5) = 95
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando

Re: Calcular Xv e Yv de uma função

Mensagempor Marcos Paulo » Dom Nov 07, 2010 14:57

hmm.. saquei mas ai não tem que fazer nada de Xv e Yv do vertice? e a letra B e C, estao corretas?, mas entao seria.. obrigado
Editado pela última vez por Marcos Paulo em Dom Nov 07, 2010 15:11, em um total de 1 vez.
Marcos Paulo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 07, 2010 11:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: Calcular Xv e Yv de uma função

Mensagempor JoaoGabriel » Dom Nov 07, 2010 15:07

eu so fiz a letra a) tenta fazer as outras
lembrando
xv = -b/2a
yv= - delta/4a

e não fica -5², pois qualquer numero elevado a expoente positivo vira positivo
ate mais
Avatar do usuário
JoaoGabriel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Ago 18, 2010 16:05
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudando para Engenharia Aeroespacial
Andamento: cursando

Re: Calcular Xv e Yv de uma função

Mensagempor Marcos Paulo » Dom Nov 07, 2010 15:12

pod crer, nem lembrava.. ;x vou tentar aqui sim. vlw.
Marcos Paulo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Nov 07, 2010 11:58
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: Calcular Xv e Yv de uma função

Mensagempor Elcioschin » Dom Nov 07, 2010 22:39

Infelizmente todas as soluções estão erradas

L(x) = - 5*x² + 20*x - 30

a) L(5) = - 5² + 20*5 - 30 ----> L(5) = - 25 + 100 - 30 ----> L(5) = 45

b) xV = - b/2a ----> a = - 1, b = 20 ----> xV = - 20/2*(-1) ----> xV = 10

c) yV = - 10² + 20*10 - 30 ----> yV = 70
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?