• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função dispêndio

função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:01

As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r}{Dy(px,py,r}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

Aí se calcula a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}
Editado pela última vez por jmario em Qua Jun 09, 2010 09:21, em um total de 1 vez.
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:15

jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:22

jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor jmario » Qua Jun 09, 2010 09:23

jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario

jmario escreveu:
jmario escreveu:
jmario escreveu:As funções dipêndios são as seguintes:

Dx(px,py,r)=\frac{r\sqrt[]{Px}}{\sqrt[]{Px}+\sqrt[]{Py}}
Dy(px,py,r)=\frac{r\sqrt[]{Py}}{\sqrt[]{Px}+\sqrt[]{Py}}

Por que a razão entre os dispêndios se transforma em:
\frac{Dx(px,py,r)}{Dy(px,py,r)}=\frac{\sqrt[]{Px}}{\sqrt[]{Py}}

A fórmula da elasticidade de substituição é dada por:
ES=\frac{TmgS(px,py)}{\frac{py}{px)}} \frac{d(\frac{py}{px)}}{dTmgS(px,py)}

Aí se chega nessa equação com apenas a derivada dessa razão com o ln, não entendi porque usar o logarítmo natural na derivada
\sigma=\frac{d ln\left[\frac{Dx(px,py,r)}{Dy(px,py,r)}\right]}{d ln \left(\frac{Px}{Py} \right)}


Alguém pode me ajudar
Grato
José Mario
jmario
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Qui Abr 15, 2010 12:23
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: economia
Andamento: formado

Re: função dispêndio

Mensagempor MarceloFantini » Qua Jun 09, 2010 20:59

José Mário, não poste a mesma mensagem repetidas vezes em um curto intervalo de tempo. Isso ocupa muito espaço a troco de nada, não trará sua resposta mais rápido, é perda de tempo e é no mínimo não muito legal para com os outros.

Sobre a sua questão, quando você faz a razão \frac{Dx(px,py,r)}{Dy(px,py,r)} = \frac{r \sqrt {Px}} {\sqrt {Px} + \sqrt {Py}} \cdot \frac{\sqrt {Px} + \sqrt {Py}} {r \sqrt {Py}} = \frac {\sqrt {Px}}{\sqrt {Py}}, os r cancelam-se e a mesma coisa com a soma das raízes.

E não sei porque derivar usando o logaritmo natural.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}