por viduani » Qui Ago 02, 2012 14:43
Boa tarde! Não sei se estou entendendo errado a idéia de imagem, mas, tentei fazer uma função modular do tipo:
I 3x - 1 I - 5, definida em R cujo valor de f é (1/3) e (-1/3). Eu encontrei os valores -5 e -3. O problema passou a surgir quando ele me perguntou o conjunto imagem dessa função. Pelo que eu entendo de conjunto imagem significa o reflexo dos valores que você atribui a X substituindo na equação tais valores e encontra o seu resultado. Nessa questão eu usei valores imaginários de -2,-1,0,1,2 e pensei que seus resultados na equação fossem a sua imagem. O livro diz que o conjunto imagem dessa questão é {y E R/y>ou igual a 5}. Ele admite valores maiores ou iguais a 5 e somente 5, por que?
-
viduani
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Jul 13, 2012 20:03
- Formação Escolar: ENSINO FUNDAMENTAL II
- Área/Curso: curso m3
- Andamento: cursando
por e8group » Qui Ago 02, 2012 17:02
Boa tarde, você estar certo que a função modular trata-se de
|3x-1| - 5 ? Se sua resposta for sim o gabarito não faz sentido ,entretanto se sua função modular na verdade é da forma |3x-1| +5 perceba que realmente

isto é a imagem da função modular é maior ou igual a 5 para domínio real ,em outras palavras ,
Obs.: Sua "visão "sobre o conceito de imagem estar correto .Imagem é ,para todo elemento no contradomínio existe pelo menos um associado a
um ou mais elementos no domínio .Há casos que diferentes valores no domínio estar associado a um mesmo elemento no CD .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Sex Ago 03, 2012 03:20
santhiago escreveu:Obs.: Sua "visão "sobre o conceito de imagem estar correto .Imagem é ,para todo elemento no contradomínio existe pelo menos um associado a um ou mais elementos no domínio .Há casos que diferentes valores no domínio estar associado a um mesmo elemento no CD .
Não necessariamente. Note que podemos definir

com

. Note que existem infinitos elementos no contradomínio para os quais não há qualquer elemento do domínio associando-o. Agora, obrigatoriamente na imagem temos cada elemento sendo associado por um elemento no domínio.
Conclusão: contradomínio e imagem não necessariamente são o mesmo conjunto, somente quando definimos a função de tal maneira que esta seja sobrejetora (escolhendo o contradomínio como igual a imagem). Note que a imagem sempre deve estar contida no contradomínio.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Sex Ago 03, 2012 11:27
É verdade ,mas foi exatamente isso que eu disse (talvez não ficou tão claro ) .
Para todo elemento no contradomínio existe pelo menos um elemento (do contradomínio) associado a um ou mais elementos no domínio .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Sex Ago 03, 2012 12:26
Novamente, na primeira parte grifada você quis dizer para todo elemento na imagem?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Sex Ago 03, 2012 13:15
Boa tarde Marcelo Fantini , oque eu quis dizer matematicamente foi ,

Certo ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Sex Ago 03, 2012 13:36
Seus símbolos dizem o seguinte: para todo elemento do contradomínio existe a imagem de um elemento contida (?) no contradomínio, que implica que existe um elemento do domínio tal que a imagem desse elemento pertence ao contradomínio.
Continua sem sentido. Até agora, o que você afirma é que todo elemento do contradomínio tem um elemento do domínio associado, o que é falso a menos que a função seja sobrejetora. Se você discorda, mostre um elemento associado a -1 para

,

como acima. A afirmação "para todo elemento do contradomínio existe pelo menos um elemento do contradomínio associado a um ou mais elementos do domínio" não tem sentido matemático.
Acho que o que você quer dizer é: para todo elemento

na imagem, contida no contradomínio, existe um elemento

do domínio tal que

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Sex Ago 03, 2012 14:03
Ok ! Grato .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Funçao modular
por Fiel8 » Sex Jul 10, 2009 19:25
- 1 Respostas
- 2536 Exibições
- Última mensagem por Molina

Sex Jul 10, 2009 21:50
Funções
-
- Função Modular
por geriane » Sáb Abr 03, 2010 21:32
- 3 Respostas
- 2999 Exibições
- Última mensagem por Molina

Dom Abr 04, 2010 12:57
Funções
-
- Funçao modular
por Skcedas » Qua Mai 26, 2010 19:29
- 6 Respostas
- 5167 Exibições
- Última mensagem por netlopes

Ter Jun 08, 2010 18:11
Funções
-
- Função Modular
por DanieldeLucena » Seg Set 20, 2010 18:03
- 1 Respostas
- 2154 Exibições
- Última mensagem por MarceloFantini

Seg Set 20, 2010 19:35
Funções
-
- Função Modular
por Pri Ferreira » Ter Nov 22, 2011 18:20
- 1 Respostas
- 1791 Exibições
- Última mensagem por LuizAquino

Ter Nov 22, 2011 18:56
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.