por jamiel » Qua Jun 22, 2011 15:49
Sabendo que

,


, calcule os logaritmos abaixo, em função de m, n e p:
a)

b)

c)

d)

e)

f)
![log(\sqrt[4]{\frac{1944}{125}})
Re:\left(log(\sqrt[4]{\frac{1944}{125}})*2 \right)=\left(log(\frac{\frac{1944}{125}}{2} \right)
\left(log(\frac{\frac{1944}{125}}{2}) - m\right) log(\sqrt[4]{\frac{1944}{125}})
Re:\left(log(\sqrt[4]{\frac{1944}{125}})*2 \right)=\left(log(\frac{\frac{1944}{125}}{2} \right)
\left(log(\frac{\frac{1944}{125}}{2}) - m\right)](/latexrender/pictures/4a2d57e167beebbf348978b392e67849.png)
Eu resolvi do meu jeito, mas não estou conseguindo entender a resolução do livro. Alguém pode me ajudar?
Gabarito do livro:
a) m+n+p
b) 3m+2n
c) 2m+3n+2p
d) 4n+2p
e) m+p-2n
f) (3m+5n-3p)/4
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por LuizAquino » Qua Jun 22, 2011 16:00
Primeiro, você tem que escrever o logaritmando como o resultado de operações de produto ou divisão entre 2, 3 ou 5. Em seguida, basta utilizar as propriedades dos logaritmos.
Por exemplo:
a)

.
(...)
e)

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jamiel » Qua Jun 22, 2011 17:17
rsrsrsr
A maneira q eu resolvi foi muito louca, mas deu o resultado também.
Entendi o q vc quis dizer, fui tirando m.m.c e encontrando quantas vezes a letras se encaixariam. Putz! Valeu mesmo, cara. Vou tentar fazer aquela q tem raiz agora!
flw ...
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Exponencial - Tenso!
por jamiel » Sáb Jun 18, 2011 03:12
- 4 Respostas
- 2440 Exibições
- Última mensagem por jamiel

Dom Jun 19, 2011 17:54
Funções
-
- Função Log - tenso dúvida
por jamiel » Dom Jun 26, 2011 16:40
- 10 Respostas
- 7135 Exibições
- Última mensagem por MarceloFantini

Seg Jun 27, 2011 00:18
Funções
-
- Limite tenso
por Isabela Sa » Qua Jun 29, 2011 19:27
- 1 Respostas
- 1199 Exibições
- Última mensagem por Claudin

Qua Jun 29, 2011 19:51
Cálculo: Limites, Derivadas e Integrais
-
- Sisteminha tenso!!
por bigolasMan » Sex Mai 04, 2012 00:21
- 1 Respostas
- 1076 Exibições
- Última mensagem por Russman

Sex Mai 04, 2012 00:37
Sistemas de Equações
-
- Função real definida pela soma de uma função par c/uma ímpar
por Taah » Sáb Mar 27, 2010 15:33
- 3 Respostas
- 5201 Exibições
- Última mensagem por Taah

Dom Mar 28, 2010 13:21
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.