• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ponto de Inflexão

Ponto de Inflexão

Mensagempor Kelvin Brayan » Ter Mai 24, 2011 16:21

O que é ponto de inflexão? esse ponto sempre coincide com o zero ou raiz da função?
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Ponto de Inflexão

Mensagempor norberto » Ter Mai 24, 2011 17:19

Oi Kelvin !

Kelvin escreveu:O que é ponto de inflexão?


Pontos de inflexão, são os pontos em que a concavidade da curva muda.

Kelvin escreveu:esse ponto sempre coincide com o zero ou raiz da função?


Não. Na verdade, eles coincidem coma as raízes da segunda derivada da função.
Por exemplo :

f(x) = x^{3}

A primeira derivada é :

f^{'}(x) = 3x^{2}

E a segunda derivada é :

f^{''}(x) = 6x

É fácil ver que 0 é a raiz dessa equação.
Portanto 0 é um ponto de inflexão de f(x) = x^{3}

Abraços.
Editado pela última vez por norberto em Ter Mai 24, 2011 17:54, em um total de 1 vez.
norberto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qua Mai 18, 2011 04:38
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Ponto de Inflexão

Mensagempor Kelvin Brayan » Ter Mai 24, 2011 17:29

Valeu!
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Ponto de Inflexão

Mensagempor Fabio Cabral » Ter Jun 07, 2011 13:29

O ponto de inflexão é dado pela raíz da segunda derivada (f"(x)).
Ou seja, igualar f"(x) a 0.

Nesse caso, o ponto de inflexão não seria x=6?
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.